一元二次方程基础知识_第1页
一元二次方程基础知识_第2页
一元二次方程基础知识_第3页
一元二次方程基础知识_第4页
一元二次方程基础知识_第5页
已阅读5页,还剩31页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、05212 xx)(013422 yx)(032cbxax)(0214 )()(xx0152aa)(1262 )(m)(1)(4)(6例题讲解 方程(方程(2a4)x2 2bx+a=0, 在什么条在什么条件下此方程为一元二次方程?在什么条件下此方程为一元二次方程?在什么条件下此方程为一元一次方程?件下此方程为一元一次方程? 解:当解:当a2a2时是一元二次方程;当时是一元二次方程;当a a2 2,b0b0时是一元一次方程;时是一元一次方程;1.下列方程中下列方程中,无论无论a为何值为何值,总是关于总是关于x的一元的一元二次方程的是二次方程的是( )A.(2x-1)(x2+3)=2x2-a B.

2、ax2+2x+4=0C.ax2+x=x2-1 D.(a2+1)x2=02.当当m为何值时为何值时,方程方程 是关于是关于x的一元二次方程的一元二次方程.0527) 1(24mxxmmD探究新知探究新知4.(1)下列哪些数是方程)下列哪些数是方程260 xx的根?从中你能体会根的作用吗?的根?从中你能体会根的作用吗? 4,3,2,1,0,1,2,3,4 (2)若)若x2是方程是方程 的一个的一个 2450axx根,你能求出根,你能求出a的值吗?的值吗?根根的作用:的作用:可以使等号成立可以使等号成立.例例 解方程:解方程:(1) x2x = 0(2) 2 x2+13x 7= 0巩固练习巩固练习(

3、1) x2 = 2x。一元二次方程化为一般形式一元二次方程化为一般形式ax2+bx+c=0 (a0)后,如果它的左边的二次三项式能因式分解,后,如果它的左边的二次三项式能因式分解,那么就可以用因式分解法解这个方程那么就可以用因式分解法解这个方程例例 解方程:解方程:(1) x2x = 0(2) 2 x2+13x 7= 0巩固练习巩固练习(1) x2 = 2x(2) 3 x227 = 0(1) x2x = 0解解:把方程左边分解因式把方程左边分解因式,得得 x(x) = 0 x = 0 或或x x 3 = 03 = 0原方程的根是原方程的根是x1=0 , x2=3一一元元二二次次方方程程(2)

4、2 x2+13x 7= 0解解:把方程左边分解因式把方程左边分解因式,得得(2x -)(x) = 0 2x -1 = 0 , x =0.5或或 x +7 = 0, x = -原方程的根是原方程的根是x1=0.5 , x2= -7一一元元二二次次方方程程第(第(1)题答案:)题答案:x2 = 2xx2 2x = 0 x(x 2) = 0 x1=0 , x2=2一一元元二二次次方方程程第(第(2)题答案:)题答案:3x2 27=0 x2 9 = 0 (x+3)(x 3) = 0 x1=3 , x2=3x+3 = 0 或或x 3 = 0=第(第(3)题答案:)题答案:(x+4)(x 3) = 0 x

5、1=4 , x2=3x+4= 0 或或x 3=0一一元元二二次次方方程程第(第(4)题答案:)题答案:(3x+1)(2x 1) = 0 x1=? , x2=?3x+1= 0 或或2x 1=0一一元元二二次次方方程程例例 解方程:解方程:(1) x2x = 0(2) 2 x2+13x 7= 0巩固练习巩固练习(1) x2 = 2x(2) 3 x227 = 0(3) x2+x 12= 0一一元元二二次次方方程程例例1: 用配方法解方程用配方法解方程0762 xx解解:配方得:配方得:开平方得:开平方得:762xx 3736222 xx 43x16)3( 2x即7 , 1 21xx移项得:移项得:原

6、方程的解为:原方程的解为:心动 不如行动例例2: 你能用配方法解方程你能用配方法解方程 吗?吗?0622 xx解解:配方得:配方得:开平方得:开平方得:3212xx )41(3)41(21222 xx 4741x范例研讨运用新知范例研讨运用新知1649)41( 2x即03212xx移项得:移项得:原方程的解为:原方程的解为:化二次项系数为1得:23 , 2 21xx例例2: 你能用配方法解方程你能用配方法解方程 吗?吗?反馈练习巩固新知反馈练习巩固新知1、用配方法解下列方程、用配方法解下列方程:(1)x2+8x-15=0(2)x2-5x-6=0(3)2x2-5x-6=0(4) x2+px+q=

7、0(p2-4q 0) 配方法配方法小结:小结:(2)移项)移项(3)配方)配方 (4)开平方)开平方(5)写出方程的解)写出方程的解2、用、用配方法配方法解一元二次方程解一元二次方程 ax2+bx+c=0(a0) 的的步骤步骤:1、配方法: 通过配方通过配方,将方程的左边化成一个含未将方程的左边化成一个含未知数的知数的完全平方式完全平方式,右边是一个右边是一个非负常数非负常数,运用直接运用直接开平方求出方程的解的方法。开平方求出方程的解的方法。(1)化二次项系数为化二次项系数为1用配方法解一般形式的一元二次方程用配方法解一般形式的一元二次方程20axbxc 把方程两边都除以把方程两边都除以 2

8、0bcxxaa 解解: :a移项,得移项,得2bcxxaa 配方,得配方,得22222bbcbxxaaaa 即即222424bbacxaa (a0)2422bbacxaa 即即即即222424bbacxaa 因为因为a0,所以所以4 0a2式子式子的值有以下三种情况:acb42044, 04) 1 (222abbacac这时此时,方程有两个不等的实数根此时,方程有两个不等的实数根aacbaacbbxbx242422212422bbacxaa 即即即即222424bbacxaa 因为因为a0,所以所以4 0a2式子式子的值有以下三种情况:acb42044, 04)2(222abbacac这时此时

9、,方程有两个相等的实数根此时,方程有两个相等的实数根abxx2210即即222424bbacxaa 因为因为a0,所以所以4 0a2式子式子的值有以下三种情况:acb42044, 04)3(222abbacac这时而而x取任何实数都不可能使取任何实数都不可能使 ,因此方程无实数根因此方程无实数根0)2(2abx一般地,式子 叫做方程根的判别式,通常用希腊字母表示它,即acb42acb4220axbxc20axbxc 242bbacxa 一元二次方程的一元二次方程的求根公式求根公式(a0)当当0时,方程时,方程的实根可写为的实根可写为用求根公式解一元二次方程的方法用求根公式解一元二次方程的方法叫

10、做叫做公式法。公式法。例例 1 解方程:解方程:27180 xx 解:解:即即 :1292xx 242bbacxa 1718abc 22474 118121bac ()( )0方程有两个不等的实数根方程有两个不等的实数根242bbacxa 211712121)7(用公式法解一元二次方程的一般步骤:用公式法解一元二次方程的一般步骤:242bbacxa 3、代入求根公式、代入求根公式 :2、求出、求出 的值,的值,24bac 1、把方程化成一般形式,并写出、把方程化成一般形式,并写出 的值。的值。a b、 c c4、写出方程的解:、写出方程的解:12xx、特别注意特别注意:当当 时无解时无解240

11、bac242bbacxa 例例 2 解方程:解方程:232 3xx化简为一般式:化简为一般式:22 330 xx这里这里1a 、 b=-2 3、b=-2 3、 c=3c=3解:解:2242 34 1 30032 12bacx ()(- -2 2 3 3 )2 2 3 3即即 :123xx1、 m取什么值时,方程取什么值时,方程 x2+(2m+1)x+m2-4=0有两个相等的实数解有两个相等的实数解 思考题思考题2、关于、关于x的一元二次方程的一元二次方程ax2+bx+c=0 (a0)。 当当a,b,c 满足什么条件时,方程的两根为满足什么条件时,方程的两根为互为相反数?互为相反数?一元二次方程

12、根与系数的关系一元二次方程根与系数的关系( (韦达定理)韦达定理)acxxabxxxxacbxax212121200,)(则的两根为若方程qxxpxxxxqpxx21212120,则:,的两根为若方程特别地:推论推论1 1一元二次方程根与系数的关系一元二次方程根与系数的关系( (韦达定理)韦达定理)012121221xxxxxxxx)()是方程(二次项系数为为根的一元二次以两个数,推论推论2 2acxxabxxxxacbxax212121200,)(则的两根为若方程3 3、如果、如果 是方程是方程2X X2 2+mX+3=0+mX+3=0的一个的一个根,求它的另一个根及根,求它的另一个根及mm的值的值. .214、已知关于、已知关于x的方程的方程x2+(2k+1)+k2-2=0 的两根的平方和比两根之积的的两根的平方和比两根之积的3倍少倍少 10,求,求k的值的值.1 1、如果、如果-1-1是方程是方程2X X2 2X+m=0X+m=0的一个根,则另的一个根,则另 一个根是一个根是_,m =_m =_。2 2、设、设 X1、X2是方程是方程X X2 24X+1=04X+1=0的两个根,则的两个根,则 X1+X2 = _ ,X1X2 = _, X12+X22 = ( = ( X1+X2)2 - -

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论