数字图像处理-实验报告书(九)目标跟踪_第1页
数字图像处理-实验报告书(九)目标跟踪_第2页
数字图像处理-实验报告书(九)目标跟踪_第3页
数字图像处理-实验报告书(九)目标跟踪_第4页
数字图像处理-实验报告书(九)目标跟踪_第5页
已阅读5页,还剩1页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、精选优质文档-倾情为你奉上电子信息学院实验报告书课程名: 数字图像处理 题 目: 实验九 目标检测与目标跟踪实验 实验类别: 【设计】 班 级: BX0901 学 号: 3 姓 名: 窦中锋 评语:学习态度:【很好】 【一般】 【较差】 程序编写:【完整】 【部分完整】 【不完整】得出结论:【正确】 【部分正确】 【不正确】报告书写:【规范】 【一般】 【不规范】成绩: 指导教师: 范光宇 批阅时间:2012年 月 日专心-专注-专业1、 实验目的(1) 了解目标检测和目标跟踪的基本原理和方法;(2) 使用MATLAB对视频中的目标进行检测和跟踪。2、 实验原理运动目标跟踪在军事制导、视觉导航

2、、机器人、智能交通、公共安全等领域有着广泛的 应用。例如在车辆违章抓拍系统中,车辆的跟踪就是必不可少的。在入侵检测中,人、动物、车辆等大型运动目标的检测与跟踪也是整个系统运行的关键所在。因此在计算机视觉领域中目 标跟踪是一个很重要的分支。 运动目标检测是运动目标跟踪的前提。运动目标检测,根据目标与摄像机之间的关系可以分为静态背景下的运动检测与动态背景下的运动检测。(一)静态背景下的运动检测:整个监控过程中只有目标在运动。主要包括以下几种方法: 1、背景差分法:整个监控过程中,需要不停地维护一个“纯背景”。对于任意一帧监控图 像而言,将其与纯背景进行差分,从而得到出现在当前画面中的运动目标。该方

3、法对光照变 化、 天气、 背景变化比较敏感,而且需要不停进行地依靠学习来维护一个纯背景画面。此外背 景的维护和更新、阴影去除等对运动目标的检测至关重要。 2、帧间差分法:通过相邻帧之间的差值计算,来获得运动目标的位置、 形状等信息的方法。 该方法对光照的适应能力很强,但由于运动目标像素上的相似性,从而不能完整地检测出运 动目标。有研究人员将相邻帧间的差分进行改进,得到三帧差分方法,即利用相邻三帧之间的 差值计算来进行运动目标的检测。该方法经很多研究人员和工程师的实际测试,证明了其在 特定环境中优良的性能。 3、光流法:在空间中,运动可以用运动场描述。而在一个图像平面上,物体的运动往往是通 过图

4、像序列中图像灰度分布的不同来体现,从而使空间中的运动场转移到图像上就表示为光 流场。光流场反映了图像上每一点灰度的变化趋势。它可看成是带有灰度的像素点在图像平 面上运动而产生的瞬时速度场,也是一种对真实运动场的近似估计。在比较理想的情况下,它 能够检测独立运动的对象而不需要预先知道场景的任何信息,可以很精确地计算出运动物体 的速度,并且可用于动态场景的情况。但是大多数光流方法的计算相当复杂,对硬件要求比较 高,不适于实时处理,而且对噪声比较敏感,抗噪性差。(二)动态背景下的运动检测:监控过程中,目标和背景都在发生运动或变化。在运动目标检测 的应用环境中,动态背景相比而言更加复杂。根据相机的运动

5、形式,可以分为以下两种: 1、相机支架固定:相机可以随着云台的运动而发生旋转,倾斜等运动。相机也可以根据远 程计算机指令来控制镜头调焦,从而产生远景和近景缩放运动。 2、相机置于移动设备之上(例如车载相机)。对于以上两种相机运动形式的任意一种而言,在进行运动目标检测之前,都需要根据一定 的方法进行全局运动估计与补偿。通常可以利用块匹配法、特征点匹配法等进行运动量的估 计。也可以利用光流法建立光流场模型,利用光流方程求解图像像素点的运动速度。 运动目标跟踪就是在一个连续视频序列中,在每一帧监控画面中找到感兴趣的运动目标 (例如车辆、行人、动物等)。跟踪大致可以分为以下几个步骤: (1)目标的有效

6、描述:目标的跟踪过程跟目标检测一样,需要对其进行有效的描述,即需 要提取目标的特征,从而能够表达该目标。一般来说,可以通过图像的边缘、轮廓、形状、纹 理、区域、直方图、矩特征、变换系数等来进行目标的特征描述。 (2)相似性度量计算:常用的方法有欧式距离、马氏距离、棋盘距离、加权距离、相似系数、相关系数等。 (3)目标区域搜索匹配:如果对场景中出现的所有目标都进行特征提取、相似性计算, 系统运行所耗费的计算量是很大的。因此通常采用一定的方式对运动目标可能出现的区域进 行估计,从而减少冗余,加快目标跟踪的速度。常用的预测算法有Kalman 滤波、粒子滤波、均值漂移等。3、 实验步骤(1) 打开计算

7、机,启动MATLAB程序,设置MATLAB的程序组中的当前活动文件夹;(2) 找到待处理的图像文件;(3) 根据实验内容和实验要求进行实验;(4) 记录和整理实验报告。 4、 实验内容(1) 编写MATLAB程序,对视频中的特定目标进行检测和跟踪,观察并记录结果。Run: clear datadisp('input video');avi = aviread('samplevideo.avi');video = avi.cdata;for a = 1:length(video) imagesc(videoa); axis image off drawnow;en

8、d;disp('output video');tracking(video);Tracking:function d = tracking(video)%输出跟踪图像,输出目标在每帧的位置。 %读取图像if ischar(video) % Load the video from an avi file. avi = aviread(video); pixels = double(cat(4,avi(1:2:end).cdata)/255; clear avielse % Compile the pixel data into a single array pixels = do

9、uble(cat(4,video1:2:end)/255; clear videoend% Convert to RGB to GRAY SCALE image.转换成灰度图像nFrames = size(pixels,4);for f = 1:nFrames pixel(:,:,f) = (rgb2gray(pixels(:,:,:,f); endrows=240;cols=320; nrames=f;for l = 2:nramesd(:,:,l)=(abs(pixel(:,:,l)-pixel(:,:,l-1);%帧之间比较,并记录%图像恢复重建k=d(:,:,l); bw(:,:,l)

10、 = im2bw(k, .2); bw1=bwlabel(bw(:,:,l); imshow(bw(:,:,l) hold oncou=1;for h=1:rows for w=1:cols if(bw(h,w,l)>0.5) %分割阈值% disp(d(h,w,l); toplen = h; if (cou = 1) tpln=toplen; end cou=cou+1; break end endenddisp(toplen);coun=1;for w=1:cols for h=1:rows if(bw(h,w,l)>0.5) leftsi = w; if (coun = 1)

11、 lftln=leftsi; coun=coun+1; end break end endenddisp(leftsi);%跟踪图像显示 disp(lftln); widh=leftsi-lftln;heig=toplen-tpln;%跟踪区域加框提示widt=widh/2;disp(widt);heit=heig/2;with=lftln+widt;heth=tpln+heit;wth(l)=with;hth(l)=heth;disp(heit);disp(widh);disp(heig);rectangle('Position',lftln tpln widh heig,'EdgeColor','r');disp(with);disp(he

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论