微积分课件:6-8 多元函数的极值_第1页
微积分课件:6-8 多元函数的极值_第2页
微积分课件:6-8 多元函数的极值_第3页
微积分课件:6-8 多元函数的极值_第4页
微积分课件:6-8 多元函数的极值_第5页
已阅读5页,还剩37页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、第八节第八节 多元函数的极值多元函数的极值多元函数的极值和最值多元函数的极值和最值条件极值条件极值实例:某商店卖两种牌子的果汁,本地牌子每实例:某商店卖两种牌子的果汁,本地牌子每瓶进价瓶进价1元,外地牌子每瓶进价元,外地牌子每瓶进价1.2元,店主估元,店主估计,如果本地牌子的每瓶卖计,如果本地牌子的每瓶卖 元,外地牌子的元,外地牌子的每瓶卖每瓶卖 元,则每天可卖出元,则每天可卖出 瓶本瓶本地牌子的果汁,地牌子的果汁, 瓶外地牌子的果汁瓶外地牌子的果汁问:店主每天以什么价格卖两种牌子的果汁可问:店主每天以什么价格卖两种牌子的果汁可取得最大收益?取得最大收益?xyyx4570 yx7680 每天的

2、收益为每天的收益为 ),(yxf)7680)(2 . 1()4570)(1(yxyyxx 求最大收益即为求二元函数的最大值求最大收益即为求二元函数的最大值.一、问题的提出一、问题的提出 设函数设函数),(yxfz 在点在点),(00yx的某邻域内的某邻域内有定义,对于该邻域内异于有定义,对于该邻域内异于),(00yx的点的点),(yx:若满足不等式若满足不等式),(),(00yxfyxf ,则称函数,则称函数在在),(00yx有 极 大 值 ; 若 满 足 不 等 式有 极 大 值 ; 若 满 足 不 等 式),(),(00yxfyxf ,则称函数在,则称函数在),(00yx有极有极小值;小值

3、;1 1、二元函数极值的定义、二元函数极值的定义极大值、极小值统称为极值极大值、极小值统称为极值. .使函数取得极值的点称为极值点使函数取得极值的点称为极值点. .二、多元函数的极值和最值二、多元函数的极值和最值(1)例例1 1处有极小值处有极小值在在函数函数)0 , 0(4322yxz 例例处有极大值处有极大值在在函数函数)0 , 0(22yxz 例例处无极值处无极值在在函数函数)0 , 0(xyz -10-50510 x-10-50510y-10-50z-10-50510 xxyz定理定理 1 1(必要条件)(必要条件)设函数设函数),(yxfz 在点在点),(00yx具有偏导数,且具有偏

4、导数,且在点在点),(00yx处有极值,则它在该点的偏导数必处有极值,则它在该点的偏导数必然为零:然为零: 0),(00 yxfx, 0),(00 yxfy. .2 2、多元函数取得极值的条件、多元函数取得极值的条件不妨设不妨设),(yxfz 在点在点),(00yx处有极大值处有极大值,则则对对于于),(00yx的的某某邻邻域域内内任任意意 ),(yx),(00yx都都有有 ),(yxf),(00yxf,证证故故当当0yy ,0 xx 时时,有有 ),(0yxf),(00yxf,说明一元函数说明一元函数),(0yxf在在0 xx 处有极大值处有极大值,必必有有 0),(00 yxfx;类类似似

5、地地可可证证 0),(00 yxfy.例如例如, 点点)0 , 0(是函数是函数xyz 的驻点,的驻点,但但不不是是极极值值点点. 仿照一元函数,凡能使一阶偏导数同时为零仿照一元函数,凡能使一阶偏导数同时为零的点,均称为函数的的点,均称为函数的驻点驻点.偏导数存在下偏导数存在下, 驻点驻点极值点极值点问题:如何判定一个驻点是否为极值点?问题:如何判定一个驻点是否为极值点?定理定理 2 2(充分条件)(充分条件)设函数设函数),(yxfz 在点在点),(00yx的某邻域内连续,的某邻域内连续,有一阶及二阶连续偏导数,有一阶及二阶连续偏导数,注意:注意:又又 0),(00 yxfx, , 0),(

6、00 yxfy, 令令 Ayxfxx ),(00, Byxfxy ),(00, Cyxfyy ),(00,则则),(yxf在点在点),(00yx处是否取得极值的条件如下:处是否取得极值的条件如下:(1 1)02 BAC时具有极值,时具有极值, 当当0 A时有极大值,时有极大值, 当当0 A时有极小值;时有极小值;(2 2)02 BAC时没有极值;时没有极值;(3 3)02 BAC时可能有极值时可能有极值, ,也可能没有极值,也可能没有极值,还需另作讨论还需另作讨论求函数求函数),(yxfz 极值的一般步骤:极值的一般步骤:第第一一步步 解解方方程程组组, 0),( yxfx0),( yxfy求

7、出实数解,得驻点求出实数解,得驻点.第二步第二步 对于每一个驻点对于每一个驻点),(00yx,求出二阶偏导数的值求出二阶偏导数的值 A、B、C.第三步第三步 定出定出2BAC 的符号,再判定是否是极值的符号,再判定是否是极值.33224( , )339f x yxyxyx 例例 :讨讨论论的的极极值值 06y-3yf 0963:2y2 xxfx解解2 , 0y3, 1x 驻点驻点:(1,0),(1,2),(-3,0),(-3,2)xyyy66, f0, f66xxfxy 在在(1,0)处处A=120,B=0,C=606122 BAC在在(1,0)处取得极小值处取得极小值-5在在(1,2)处处A

8、=120,B=0,C=-606122 BAC在在(1,2)处没有极值处没有极值在在(-3,0)处处 A=-12,B=0,C=606122 BAC在在(-3,0)处没有极值处没有极值在在(-3,2)处处A=-120,B=0,C=-606122 BAC在在(-3,2)处取得极大值处取得极大值31求最值的一般方法求最值的一般方法: 将函数在将函数在D D内的所有驻点处的函数值及在内的所有驻点处的函数值及在D D的边界上的最大值和最小值相互比较,其中最的边界上的最大值和最小值相互比较,其中最大者即为最大值,最小者即为最小值大者即为最大值,最小者即为最小值. . 与一元函数相类似,我们可以利用函数的与一

9、元函数相类似,我们可以利用函数的极值来求函数的最大值和最小值极值来求函数的最大值和最小值.3 3、多元函数的最值、多元函数的最值解解先先求求函函数数在在D内内的的驻驻点点,xyo6 yxDD如图如图,解方程组解方程组 0)4(),(0)4(2),(222yxyxxyxfyxyxxyyxfyx得得区区域域D内内唯唯一一驻驻点点)1 , 2(,且且4)1 , 2( f,再再求求),(yxf在在D边边界界上上的的最最值值, 在边界在边界0 x和和0 y上上0),( yxf,在边界在边界6 yx上,即上,即xy 6于于是是)2)(6(),(2 xxyxf,得得4, 021 xx, 2|64 xxy,6

10、4)2 , 4( f 比较后可知比较后可知4)1 , 2( f为最大值为最大值,64)2 , 4( f为最小值为最小值.xyo6 yxD例例 6 6 求求122 yxyxz的的最最大大值值和和最最小小值值., 0)1()(2)1(22222 yxyxxyxzx, 0)1()(2)1(22222 yxyxyyxzy得驻点得驻点)21,21(和和)21,21( ,解解 由由即边界上的值为零即边界上的值为零.,21)21,21( z,21)21,21( z所以最大值为所以最大值为21,最小值为,最小值为21 .因为因为01lim22 yxyxyx无条件极值无条件极值:对自变量除了限制在定义域内对自变

11、量除了限制在定义域内外,并无其他条件外,并无其他条件.问题的实质:求问题的实质:求 在条在条件件 下的极值点下的极值点A(x,y)2(xyyzzx) xyz2 三、条件极值三、条件极值-拉格朗日乘数法拉格朗日乘数法3 3实实例例: :某某工工厂厂要要用用铁铁板板做做成成一一体体积积为为2m2m 的的有有盖盖长长方方体体水水箱箱, ,问问当当长长, ,宽宽, ,高高各各取取多多少少尺尺寸寸时时, ,可可以以使使用用料料最最省省? ?条件极值的求法条件极值的求法: 方法方法1 代入法代入法.求一元函数求一元函数的无条件极值问题的无条件极值问题例如例如 ,转化转化(x,y)0,在在条条件件下下zf(

12、x,y) 求求函函数数的的极极值值(x,y)0y(x) 从从条条件件中中解解出出zf(x, (x)( )yx 注注: :此此方方法法仅仅适适用用于于可可解解出出情情况况(x,y)0,在在条条件件下下方法方法2 拉格朗日乘数法拉格朗日乘数法.如方法如方法 1 所述所述 ,则问题等价于一元函数则问题等价于一元函数可确定隐函数可确定隐函数的极值问题的极值问题,极值点必满足极值点必满足设设 记zf(x,y). 求求函函数数的的极极值值(x,y)0y(x), zf(x, (x)故故 xydzdyff0dxdxxydy,dx 因因xxyyff0 yxxyff 故有故有极值点必满足极值点必满足xxf0 yy

13、f0 (x,y)0例例 7 7 将正数将正数 12 分成三个正数分成三个正数zyx,之和之和 使得使得zyxu23 为最大为最大.解解22x3y32zL3x y z0L2x yz0Lx y0Lxyz12 解解得得唯唯一一驻驻点点)2 , 4 , 6(,.691224623max u则则故最大值为故最大值为例例 8 8 在在第第一一卦卦限限内内作作椭椭球球面面 1222222 czbyax的的切切平平面面,使使切切平平面面与与三三个个坐坐标标面面所所围围成成的的四四面面体体体体积积最最小小,求求切切点点坐坐标标.解解设设),(000zyxP为为椭椭球球面面上上一一点点,令令1),(222222

14、czbyaxzyxF, 过过),(000zyxP的切平面方程为的切平面方程为 )(020 xxax )(020yyby0)(020 zzcz,化简为化简为 1202020 czzbyyaxx,该切平面在三个轴上的截距各为该切平面在三个轴上的截距各为 02xax ,02yby ,02zcz ,所所围围四四面面体体的的体体积积 000222661zyxcbaxyzV ,在条件在条件1220220220 czbyax下求下求 V 的最小值的最小值,可得可得即即30ax 30by ,30cz 多元函数的极值多元函数的极值拉格朗日乘数法拉格朗日乘数法(取得极值的必要条件、充分条件)(取得极值的必要条件、

15、充分条件)多元函数的最值多元函数的最值四、小结四、小结思考题思考题 若若),(0yxf及及),(0yxf在在),(00yx点均取得点均取得极值, 则极值, 则),(yxf在点在点),(00yx是否也取得极值?是否也取得极值?思考题解答思考题解答不是不是.例例如如 22),(yxyxf ,当当0 x时时,2), 0(yyf 在在)0 , 0(取取极极大大值值;当当0 y时,时,2)0 ,(xxf 在在)0 , 0(取极小值取极小值;但但22),(yxyxf 在在)0 , 0(不取极值不取极值.一、一、 填空题填空题: :1 1、 函数函数)4)(6(),(22yyxxyxf 在在_点取点取得极得

16、极_值为值为_._.2 2、 函数函数xyz 在附加条件在附加条件1 yx下的极下的极_值值为为_._.3 3、 方程方程02642222 zyxzyx所确定的所确定的函数函数),(yxfz 的极大值是的极大值是_,_,极小值极小值是是_._.二二、 在在 平平 面面xoy上上 求求 一一 点点 , , 使使 它它 到到0, 0 yx及及0162 yx三三直直线线的的距距离离平平方方之之和和为为最最小小. .三三、 求求内内接接于于半半径径为为a的的球球且且有有最最大大体体积积的的长长方方体体. .练练 习习 题题四、四、 在第一卦限内作球面在第一卦限内作球面1222 zyx的切平面的切平面,

17、 ,使使得切平面与三坐标面所围的四面体的体积最小得切平面与三坐标面所围的四面体的体积最小, ,求求切点的坐标切点的坐标. .一一、1 1、( (3 3, ,2 2) ), ,大大, ,3 36 6; 2 2、大大, ,41; 3 3、7 7, ,- -1 1. .二二、)516,58(. .三三、当当长长, ,宽宽, ,高高都都是是32a时时, ,可可得得最最大大的的体体积积. .四四、).31,31,31(练习题答案练习题答案的图形的图形观察二元函数观察二元函数22yxexyz 二、多元函数的极值和最值二、多元函数的极值和最值的图形的图形观察二元函数观察二元函数22yxexyz 二、多元函数的极值和最值二、多元函数的极值和最值的图形的图形观察二元函数观察二元函数22yxexyz 二、多元函数的极值和最值二、多元函数的极值和最值的图形的图形观察二元函数观察二元函数22yxexyz 二、多元函数

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论