




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、.对初中数学课堂教学有效设问的途径和策略分析数学教学是数学思维活动的教学.老师向学生提出问题,是激发学生数学思维活动的重要手段.有效设问能引领教学的开展,激发学生的探究欲,是让学生获得数学学习体验的开端.一、数学课堂教学有效设问的原那么1.问题设计应紧扣教学中心,不能偏离主题,要为实现课堂教学中心任务而效劳通常情况下,学生承受和掌握新知识不是自发的过程,是在老师的传授和引导下,有目的、有方案地通过师生双边活动来完成的.任何一节课都有它的教学中心和任务,师生都要为实现这一中心和任务而共同努力.提问是课堂教学的重要组成部分,必须紧紧围绕这个中心.在备课时,教者应对提问进展周密的研究和布置,尽可能在
2、进步课堂教学效率中发挥其积极作用,切忌东拉西扯,打乱学生正常思路,分散学生注意力.假如学生偏离了中心,老师就要适时打住,就像手中的风筝,上下适度、远近适宜.2.问题设计应面向全体学生,由易到难分层递进,满足不同层次学生的需要在任何一个班集体中,因学生的智力程度和学习才能存在差异,学习程度自然有“好、中、差之分,即所谓的“层.老师在设计问题时要由浅入深、层层推进,设计出可供不同才能学生答复的问题,分层次引导学生思维才能的进步.老师应设置由低到高六个层次程度的问题.一般把回忆、识别程度的提问和理解程度的提问交给程度较差和稍差的学生答复;把应用性程度的提问和分析程度的提问交给中等和中上程度的学生答复
3、;把综合程度的提问和评价程度的提问交给程度较高的学生答复.这样,可使全班学生人人都处于考虑问题、答复以下问题、参与讨论问题的积极状态,充分调动全班学生的学习积极性,获得最正确的教学效果,真正表达新课程数学教学理念:让不同的学生在数学上得到不同的开展.3.问题设计应明确教学目的,指向明确,理解学生的知识背景,切记不可大、空、泛首先,老师课堂设问不能为问而问.例如有个老师讲授“相似三角形的应用课,准备了一只用布蒙住的细口圆腰的花瓶,目的是让学生利用相似的知识测出花瓶的内径.他先让学生猜布里这个大家伙是什么,猜来猜去大家都没猜出来,时间倒用了5分钟,这一问题环节的设计就是失败的.学生盲目应答,在热闹
4、的表象下,事实上降低了学生的学习兴趣,弱化了学习的积极性.老师在问之前应该首先问自己“我为什么要问?在明确的教学目的的指引下去提问,尽量使得每一个问题都有价值,都能引发学生的考虑,这才是我们课堂上需要的有效设问.其次,老师应提出一些有考虑价值的问题,以触动学生的心灵,激发他们考虑探究的兴趣.老师的问应该是有的放矢,指向明确,设计的问题不能过于空泛,似是而非,使学生不知从何作答.例如,一次评优课活动中一个青年老师上“平方根时,讲完性质后练习,其中有一道练习是让学生先举一个数,然后说出它是谁的平方根.结果前两个学生都举了正数的例子,老师一边问“有没有其他不同的例子呢?一边继续请同学起来答复,结果都
5、没有到达老师预期的举一些负数或零的例子.老师很生气,在评课时还没发现自己的问题,认为是学生太傻.事实上老师的问题指向不明确,这个“不同是数字不同?符号不同?还是其他呢?可见有效的设问可以节约时间,进步课堂效率.再者,老师的课堂提问要把握时机,根据课时内容和学生的知识背景,分析学生的特点,在适当时候设疑提问.例如,我在初三的一个双语实验班和一个普通班上“一元二次方程和二次函数的关系的课时,理解到双语实验班已经复习过方程的内容且根底较好,所以在上的时候直接一步步抛出了本堂课的问题串,效果较好;而普通班进度慢,当时还没有复习过方程,当我也像在双语实验班那样提出第一个问题时,学生的反响就让我意识到这是
6、不行的,因为学生连最根本的根都不会求了,很陌生,所以我立即取消方案,从复习的角度提问,渐渐引入关系,结果内容虽没上完,但是课堂的效果是好的,学生答复起来很顺畅,到达了教学的目的.二、数学课堂教学有效设问的策略1.结合生活实际或学生感兴趣的情境设计问题,激发学生学习的兴趣心理学研究说明,当外部刺激唤起主体的情感活动时,就更容易成为注意的中心,从而强化理解和记忆;相反,不能唤起情感活动,主体必然对它漠不关心.人的情感体验往往由详细的问题情境所决定,生动良好的教学情境对学生具有宏大的感染力、感召力.因此,现代的教育理论强调在问题的设计时,结合生活实际或学生感兴趣的情境,以激发学生的学习兴趣与动机.我
7、曾经听过一堂?平均数、中位数、众数?的公开课,开课老师这样导入:首先设问“喜欢打篮球吗?“平时看NBA吗?“知道姚明吗?“你们认为他篮球打得好吗?这些问题立即引起了学生的关注和兴趣,班级里七嘴八舌,本来紧张的气氛变得宽松,大部分学生答复说姚明篮球打得很好,也有部分学生唱反调,这时老师就及时设问“你们能证明自己的观点吗?“你打算如何来证明?在让学生阐述了一些理由后,老师就给出了姚明在2019-2019赛季25场比赛的得分与篮板球的数据,同时也给出了奥尼尔、加索尔这两个顶级中锋的相应数据,提问:“你们可以用这些数据来说明你们的观点吗?通过这样的一系列设问,极大地激发了学生的兴趣,讨论并主动地动笔计
8、算平均数,他们甚至提到了“得分的稳定性,为以后学习“方差埋下了伏笔.2.设计发散性问题,培养学生创造性思维及创新才能创造才能可用如下公式估计:创造才能=知识量×发散思维才能.故设计发散性问题可培养学生思维的独创性,进步他们的创新才能.·设计同一条件、多种结论问题这类问题是指确定了条件后,没有固定的结论,让学生尽可能多地确定未知结论,并去求解这些未知结论.这个思维过程有一定的广度和深度,合适不同层次的学生.例如:我们常见如图1那样图案的地面,它们分别是全用正方形或全用正六边形的材料铺成的,这样形状的材料可铺成平整、无空隙的地面.如今问:像上面那样铺地面,能否全用正五边形材料?
9、你能不能另外想出一个用一种多边形不一定是正多边形的材料铺地的方案?把你的想法画成草图;请你再画出一个用两种不同正多边形材料铺成的地面的草图.分析 要完成此题,要求学生理解题中要求,总结规律,结合多边形有关知识及图形来探究问题,此题中就有无数个方案符合要求,如图2.中方案也很多,如图3.此题中设计方案的多样性不仅要求学生灵敏运用根底知识,而且还考察学生的审美素养,有效检验了学生的综合素质,培养了学生创新才能.·设计逆向思维的开放性问题设计问题应使学生在全面掌握传统习题、常规解法后,通过逆向分析,探究解决问题,从而训练逆向思维习惯,培养创新思维才能.例如:一个二元二次方程和一个二元一次方
10、程组成的二元二次方程组的解是和试写出一个符合要求的方程组.分析此题是在学会用代入法解二元二次方程组后设计的,学生可在纯熟掌握二元二次方程组解法后,逆向求二元二次方程组,故应求出以7,1为根的一元二次方程及以-3,5为根的一元二次方程,然后才能构造出二元二次方程组.·设计一题多变问题,培养学生对图形及习题的发散思维习惯通过对图形的变换或者条件的更换或添加,可起到举一反三、触类旁通的作用,培养学生发散思维习惯.例如:把两块全等的等腰直角三角板按下页图4放置,其中边BC,FP均在直线l上,边EF与边AC重合.将EFP沿直线l向左平移到下页图5的位置时,EP交AC于点Q,连结AP,BQ.猜测
11、并写出BQ与AP所满足的数量关系和位置关系,请证明你的猜测;将EFP沿直线l向左平移到图6的位置时,EP的延长线交AC的延长线于点Q,连接AP,BQ.你认为中所猜测的BQ与AP的数量关系和位置关系还成立吗?假设成立,给出证明;假设不成立,请说明理由.3.在学生的每个思维障碍处巧妙设疑,不断深化问题,使学生更深化地理解、掌握知识点并内化为自己的知识以复习课为例,复习课的多重才能要求,意味着复习课的提问设计不应是课本知识点的系统重复,假如仅把一章的公式、定理罗列出来让学生记背一遍,这对知识的内化和运用才能的进步是没有作用的.复习课问题的设计既要注意分步引导,更要便于学生探究,处理好知识与技能的关系
12、,精选、精编例习题,重视数学的实际应用,注重学生的动手操作才能;课堂中要充分表达教学民主,使不同层次的学生有发表自己见解的时机,在讨论中进步学生分析问题、解决问题的才能以及提出问题的才能.例如复习?四边形?时,设计了如下问题:如图7,ABC中,P是AB边上任一点,PE/BC,PF/AC.问题1 四边形PECF是什么特殊四边形?问题2 有无可能更特殊?比方矩形?菱形?学生讨论能否为矩形取决于C是否为直角;能否为菱形取决于邻边是否相等,想象P点从上向下挪动时四边形PECF哪些变?哪些不变?从直觉上感觉菱形的存在性问题3 谁能迅速找到使四边形PECF变为菱形的点P的位置?部分学生讨论得出P为AB中点
13、,但必须有AC=BC,但题中不具备此条件,老师继续启发.问题4 假设四边形PECF为菱形,那么PC有什么特点?学生受此启发由此得出点P为C的平分线上的点.问题5 假如AC=BC,应该取AB的中点,还是C的角平分线?学生比较分析,联络等腰三角形“三线合一的性质,发现两点是同一点.此时老师继续深化问题,出示以下问题:问题6 根据以上研究成果,你能把一张三角形纸片折出一个菱形吗?学生每人一张三角形纸片各自探究、实验,直到成功.其实,任何一门学科都离不开死记硬背,关键是记忆有技巧,“死记之后会“活用。不记住那些根底知识,怎么会向高层次进军?尤其是语文学科涉猎的范围很广,要真正进步学生的写作程度,单靠分
14、析文章的写作技巧是远远不够的,必须从根底知识抓起,每天挤一点时间让学生“死记名篇佳句、名言警句,以及丰富的词语、新颖的材料等。这样,就会在有限的时间、空间里给学生的脑海里注入无限的内容。日积月累,积少成多,从而收到水滴石穿,绳锯木断的成效。以上复习课围绕四边形的定义、断定、性质展开,有些老师会提问“什么叫平行四边形?性质、断定有哪些?然后依次再问矩形、菱形、正方形的情况,这样的问题学生虽然可以一一作答,但是四个问题的关系是互相平行的,不能帮助学生对它们进展横向比较.而本例老师的提问设计贴近学生的思维开展,在学生的每“师之概念,大体是从先秦时期的“师长、师傅、先生而来。其中“师傅更早那么意指春秋
15、时国君的老师。?说文解字?中有注曰:“师教人以道者之称也。“师之含义,如今泛指从事教育工作或是传授知识技术也或是某方面有特长值得学习者。“老师的原意并非由“老而形容“师。“老在旧语义中也是一种尊称,隐喻年长且学识渊博者。“老“师连用最初见于?史记?,有“荀卿最为老师之说法。渐渐“老师之说也不再有年龄的限制,老少皆可适用。只是司马迁笔下的“老师当然不是今日意义上的“老师,其只是“老和“师的复合构词,所表达的含义多指对知识渊博者的一种尊称,虽能从其身上学以“道,但其不一定是知识的传播者。今天看来,“老师的必要条件不光是拥有知识,更重于传播知识。个思维障碍处巧妙设疑,不断深化问题,各个问题的解答需要学生全面回忆各个图形的知识,理清它们之间的关系,不仅复习了三角形中位线、等腰三角形的性质,平行四边形、矩形、菱形的断定方法等知识,而且在此过程中学生猜测、质疑、讨论、动手实验,从不同角度探究问题,不断提出问题、解决问题,培养了学生的自主探究、合作交流、动手理论才能和应用数学的才能.提出一个问题往往比解决一个问题更重要,因为解决一个问题也许是一个运算步骤,一个公式的应用而已;而提出新的问题、新的可能性,从新的角度去看旧问题却需要有创造性、创新的想象力.总之,数学课堂中有效的设问是一门教学艺术,在教学中,老师应深化教材,并结合学生认知特点,精心设计恰当的问题,激活学生的思维活动,培
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 民族穿搭风格课件
- 民族民间吉祥如意课件
- 民族服饰课件片头
- 2025篮球裁判考试题及答案
- 土地相关业务知识培训内容课件
- 土地的誓言课件荣德基
- 高中励志口号及心理辅导文案设计
- 民族大团结获奖课件
- 液化气站安全隐患排查与整改措施
- 郑州幼儿师范高等专科学校《水环境监测实验》2024-2025学年第一学期期末试卷
- 2025年摄影测量竞赛题库及答案
- 中国现代国防教学课件
- 食堂工人培训课件
- 2025届江苏省苏州地区学校英语八年级第二学期期末联考试题含答案
- 【艾瑞咨询】2024年中国健康管理行业研究报告494mb
- 胸痹的中医治疗
- 人流术后的护理及健康宣教
- 财务岗位笔试题目及答案
- 兵团两委考试试题及答案
- DB31/T 636.1-2018会议经营与服务规范第1部分:会议服务机构等级划分与评定
- 创新素养评价体系:核心素养框架下的关键指标研究
评论
0/150
提交评论