




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、第八章 弯曲变形同济大学航空航天与力学学院 顾志荣一、教学目标掌握求梁变形的两种方法:积分法和叠加法,明确叠加原理的使用条件,掌握用变形比较法求解静不定梁。二、教学内容弯曲变形的量度及符号规定;挠曲线近似微分方程及其积分;计算弯曲变形的两种方法;用变形比较法解简单的超静定梁三、重点难点梁的变形分析。挠曲线近似微分方程。积分法求梁的变形。叠加法求梁的变形。用变形比较法解简单超静定梁。四、教学方式 采用启发式教学,通过提问,引导学生思考,让学生回答问题。五、计划学时 4学时六、实施学时七、讲课提纲回顾:弯曲内力在外力作用下,梁的内力沿轴线的变化规律。弯曲应力在外力作用下,梁内应力沿横截面高度的分布
2、规律。本章弯曲变形在外力作用下,梁在空间位置的变化规律。研究弯曲变形的目的刚度计算;解简单的超静定梁。本章的基本内容弯曲变形的量度及符号规定;挠曲线近似微分方程及其积分;计算弯曲变形的两种方法;用变形比较法解简单的超静定梁。(一)、弯曲变形的量度及其符号规定1、度量弯曲变形的两个量:挠度:梁轴线上的点在垂直于梁轴线方向的所发生的线位移称为挠度。(工程上的一般忽略水平线位移)图8-1转角:梁变形后的横截面相对于原来横截面绕中性轴所转过的角位移称为转角。2、符号规定:坐标系的建立:坐标原点一般设在梁的左端,并规定:以变形前的梁轴线为x轴,向右为正;以y轴代表曲线的纵坐标(挠度),向上为正。挠度的符
3、号规定:向上为正,向下为负。转角的符号规定:逆时针转向的转角为正;顺时针转向的转角为负。(二)、挠曲线近似微分方程及其积分1、挠曲线在平面弯曲的情况下,梁变形后的轴线在弯曲平面内成为一条曲线,这条曲线称为挠曲线。图8-22、挠曲线近似微分方程数学上:曲线的曲率与曲线方程间的关系材力上:挠曲线的曲率与梁上弯矩和抗弯刚度间的关系显然,挠曲线的曲线方程与梁的弯矩刚度间的关系可以用下式表示:这个等式称为挠曲线近似微分方程近似解释:忽略了剪力的影响;由于小变形,略去了曲线方程中的高次项。3、挠曲线近似微分方程的积分转角方程和挠曲线方程对挠曲线近似微分方程积分一次,得转角方程:再积分一次,得挠曲线方程:积
4、分常数的确定及其物理意义和几何意义积分常数的数目取决于的分段数n段积分常数2n个举例:图8-3分2段,则积分常数2x2=4个积分常数的确定边界条件和连续条件:边界条件:梁在其支承处的挠度或转角是已知的,这样的已知条件称为边界条件。连续条件:梁的挠曲线是一条连续、光滑、平坦的曲线。因此,在梁的同一截面上不可能有两个不同的挠度值或转角值,这样的已知条件称为连续条件。积分常数与边界条件、连续条件之间的关系:积分常数2n个=2n个 边界条件连续条件图8-3所示的例题中:边界条件: 连续条件:例题: 列出图8-4所示结构的边界条件和连续条件。图80-4解:边界条件: 连续条件:积分常数的物理意义和几何意
5、义物理意义:将x=0代入转角方程和挠曲线方程,得即坐标原点处梁的转角,它的EI倍就是积分常数C;即坐标原点处梁的挠度的EI倍就是积分常数D。几何意义:C转角D挠度举例:(三)、计算弯曲变形的两种方法1、积分法基本办法利用积分法求梁变形的一般步骤:建立坐标系(一般:坐标原点设在梁的左端),求支座反力,分段列弯矩方程;分段列出梁的挠曲线近似微分方程,并对其积分两次;利用边界条件,连续条件确定积分常数;建立转角方程和挠曲线方程;计算指定截面的转角和挠度值,特别注意和及其所在截面。积分法求梁变形举例:用积分法求图示梁、:图8-5解:分段建立弯矩方程AB段: (0<x1)BC段: ()分段建立近似
6、微分方程,并对其积分两次AB段:即:BC段:利用边界条件、连续条件确定积分常数由边界条件确定C1、D1:当时, 由(1)式得 C1=0 ;当时, 由(2)式得 D1=0 。由连续条件确定C2、D2:当时,即联立、式子: 得 当时,即联立、式:得D2=0分段建立转角方程、挠曲线方程:AB段:BC段:求梁指定截面上的转角和挠度当时,由式得, ; 由式得,当时,由式得, ; 由式得,2、叠加法简捷方法记住梁在简单荷载作用下的变形挠曲线方程、转角、挠度计算方式。叠加法的两种处理方法:荷载叠加图10-6变形叠加图8-7荷载叠加法求梁变形举例:图8-8求、(图8-8,b)则求、(图8-8,b)求、(图8-
7、8,c)求、(图8-8,c),=最后:求 、 、(四)、用变形比较法解简单超静定梁1、超静定的概念2、用变形比较法解简单超静定梁的基本思想:解除多余约束,变超静定梁为静定梁;用静定梁与超静定梁在解除约束处的变形比较,建立协调方程;通过协调方程(即补充方程),求出多余的约束反力。3、简单超静定梁求解举列。求图示梁的FQ、M图图8-9(a)示结构为简单(一次)超静定梁图8-9(a)解:选基本静定梁图8-9(b)解除c端约束,代之以约束力Fc图8-9(b)建立变形协调条件采用荷载叠加法,并对原梁做如下图8-9(c)等效变换:图8-9(c)此时的变形协调条件可以写成:查表得:将查表所得结果代入式,解出求A端的约束反力作该梁的FQ、M图用变形比较法解超静定梁举例两端固定的水平梁AB,在其左端转动了一个微小角度,如图所示,试求其约束反力。图8-10解:解除A端约束,使超静梁变成静
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025员工解除劳动合同协议书范文
- 2025合同终止的具体法律事实解析
- 2025关于机械设备租赁合同
- 2025深圳市标准商铺租赁合同范本
- 2025短期临时劳动合同协议书
- 2025年深入理解技术合同与劳务合同的区别与联系
- 2025精简版的购房合同协议书
- 《全球建筑》课件
- 《常见的健康问题解析》课件
- 《脊柱侧弯的护理》课件
- 母乳喂养知识培训课件下载
- 西安市曲江第三中学行政人员及教师招聘笔试真题2024
- 2025-2030中国竹纤维行业市场发展现状及竞争策略与投资前景研究报告
- 委托外包催收合同协议
- 2025-2030中国涂装行业市场深度分析及发展预测与投资策略研究报告
- 乳腺癌诊治指南与规范(2025年版)解读
- 银行系统招聘考试(经济、金融、会计)模拟试卷14
- 心理韧性在咨询中的重要性试题及答案
- 外研版(三起)(2024)三年级下册英语Unit 2 单元测试卷(含答案)
- 2025年全国普通话水平测试训练题库及答案
- 国开(内蒙古)2024年《创新创业教育基础》形考任务1-3终考任务答案
评论
0/150
提交评论