第27章相似三角形知识点总结及典型题目_第1页
第27章相似三角形知识点总结及典型题目_第2页
第27章相似三角形知识点总结及典型题目_第3页
第27章相似三角形知识点总结及典型题目_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、相似三角形知识点总结 1. 比例线段的有关概念: b、d叫后项,d叫第四比例项,如果b=c,那么b叫做a、d的比例中项。把线段AB分成两条线段AC和BC,使AC2=AB·BC,叫做把线段AB黄金分割,C叫做线段AB的黄金分割点。 2. 比例性质: 3. 平行线分线段成比例定理: 定理:三条平行线截两条直线,所得的对应线段成比例,如图:l1l2l3。 推论:平行于三角形一边的直线截其他两边(或两边的延长线)所得的对应线段成比例。定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边。 4. 相似三角形的判定:两角对应相等,两个三角形相似

2、。 两边对应成比例且夹角相等,两三角形相似 三边对应成比例,两三角形相似 如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角形相似 平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似直角三角形被斜边上的高分成的两个直角三角形和原三角形相似 5. 相似三角形的性质 相似三角形的对应角相等 相似三角形的对应边成比例 相似三角形对应高的比、对应中线的比和对应角平分线的比都等于相似比 相似三角形周长的比等于相似比相似三角形面积的比等于相似比的平方 相似三角形常见的图形位似图形有关的概念与性质及作法1. 如果两个图形不仅是

3、相似图形,而且每组对应顶点的连线都交于一点,那么这样的两个图形叫做位似图形. 2. 这个点叫做位似中心,这时的相似比又称为位似比. 注: (1) 位似图形是相似图形的特例,位似图形不仅相似,而且对应顶点的连线相交于一点. (2) 位似图形一定是相似图形,但相似图形不一定是位似图形. (3) 位似图形的对应边互相平行或共线. 3.位似图形的性质: 位似图形上任意一对对应点到位似中心的距离之比等于相似比. 注:位似图形具有相似图形的所有性质.4. 画位似图形的一般步骤: (1) 确定位似中心(位似中心可以是平面中任意一点) (2) 分别连接原图形中的关键点和位似中心,并延长(或截取). (3) 根

4、据已知的位似比,确定所画位似图形中关键点的位置. (4) 顺次连结上述得到的关键点,即可得到一个放大或缩小的图形.(5) 在平面直角坐标系中,如果位似变换是以原点O为位似中心,相似比为k(k>0),原图形上点的坐标为(x,y),那么同向位似图形对应点的坐标为(kx,ky), 反向位似图形对应点的坐标为(-kx,-ky)一选择题: 1、下列各组数中,成比例的是()A7,5,14,5 B6,8,3,4 C3,5,9,12 D2,3,6,122、如果x:(x+y)3:5,那么x:y( )A. B. C. D.3、如图,F是平行四边形ABCD对角线BD上的点,BFFD=13,则BEEC=( )A

5、、 B、 C、 D、4、下列说法中,错误的是( )(A)两个全等三角形一定是相似形 (B)两个等腰三角形一定相似(C)两个等边三角形一定相似 (D)两个等腰直角三角形一定相似5、如图,RtABC中,C90°,D是AC边上一点,AB5,AC4,若ABCBDC,则CDA2BCD二、填空题6、已知4,9,是的比例中项,则7、如图,要使ABCACD,需补充的条件是(只要写出一种)(第7题)8、如图,小东设计两个直角,来测量河宽DE,他量得AD2m,BD3m,CE9m,则河宽DE为 9、一公园占地面积约为800000,若按比例尺12000缩小后,其面积约为10、如图,点P是RtABC斜边AB上

6、的任意一点(A、B两点除外)过点P作一条直线,使截得的三角形与RtABC相似,这样的直线可以作条(第10题)三、解答题11、如图1895,AB是斜靠在墙壁上的长梯,梯脚B距墙80cm,梯上点D距墙70cm,BD长55cm求梯子的长12、如图,已知ACAB,BDAB,AO78cm,BO42cm,CD159cm,求CO和DO 13、如图,在正方形网格上有,这两个三角形相似吗?如果相似,求出的面积比14、已知:如图,在ABC中,点D、E、F分别在AC、AB、BC边上,且四边形CDEF是正方形,AC3,BC2,求ADE、EFB、ACB的周长之比和面积之比15、如图所示,梯形ABCD中,ADBC,A=90°,AB=7

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论