说明讲稿振动_第1页
说明讲稿振动_第2页
说明讲稿振动_第3页
说明讲稿振动_第4页
说明讲稿振动_第5页
已阅读5页,还剩32页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、无阻尼自由振动k + k2-kém1ù ìüéù ìüì ü0xx01+121=ú íx ýú íx ýí0ýê 0ê-këmû î 2 þëkû î 2 þî þ222ì x1 (t) ü = Asin (wt + f ) = ì A1 üsin (wt +

2、 f )íx(t)ýíA ýîþî 2 þ2广义特征值问题K A = w 2 M AKF= wMF自振频率与振型2iiinX (t) = åai Fi sin(wit + fi )i =1自由振动振动力学1内容回顾自振频率与振型的计算振动力学2m1 x1 = -k1 x1 + k2 (x2 - x1 )m2 x2 = k2 (x1- x2 ) + k3 (x3- x2 )m3 x3 = k3 (x2- x3 ) - k4 x3振动力学3m1 x1 + (k1 + k2 )x1 - k2 x2 = 0m2

3、x2 - k2 x1m3 x3 - k3 x2+ (k2+ (k3+ k3 )x2+ k4 )x3- k3 x3= 0= 0振动力学4m1 x1 = -k1 x1 + k2 (x2 - x1 )m2 x2 = k2 (x1 - x2 ) + k3 (x3 - x2 )m3 x3 = k3 (x2 - x3 ) - k4 x3ìm1 x1 + (k1 + k2 )x1 - k2 x2= 0ïm x - k x + (k+ k )x - k x = 0í222123233ïm x - k x + (k+ k )x = 0îém133323

4、430 ù ì x1 (t) üék1 + k2-k20ù ì x1 (t) üì0ü00 ú ïx (t)ï + êú ïx(t)ï = ïïê 0-k0k + k-kmú íýú íýí0ýêêë 0êëê2222-k3332m3 úû 

5、8;ïx3 (t)þïk3 + k4 ûú îïx3 (t)þïîï0þï0M X (t)+ K X (t) = 0ék1 + k2-k2ù0ém10 ùì x1 (t) ü0ú X (t) = ïx (t)ïK = êM = ê 00 ú-k0k + k-kmíýêêë 0úm3 

6、50;ûêêëú222332ïîx3 (t)ïþk + k úû0-k334振动力学5ì A1 üX (t) = Asin(wt + f) = ï Aïwt + f)íýsin(2ïî A3 ïþX (t) = -w2 Asin(wt + f)-w2 M Asin(wt + f) +K Asin(wt + f) = 0K A = w 2 M A振动力学6M X (t)+ K X (t)

7、= 0Jacobi方法QL(QR)方法逆迭代法(幂法、反幂法)Sturm序列 子空间迭代法Lanczos法等振动力学7K A = w 2 M AGeneralized Eigenproblem(K - w 2 M )A = 0K - w 2 M = 0ék1 + k2-k2ém10 ùùú00M = ê 00 úK = ê-k0k + k-kmêêë 0úm3 úûêêëú222-k3033k3 + k4 ú

8、;û0k + k - m w 2-k1212k + k - m w 2-k0-k= 022323+ k - m w 2-kk3343振动力学8行列式展开法k + k - m w 2-k01212k + k - m w 2-k0-k= 022323- m w 2-kk + k3343k1 = k2= k3= k4= 1= m3= 1= 2m1m22 - w 2-1 0-12 - 2w 2-10-1 2 - w 2= 0振动力学92 - w 2-1 0-12 - 2w 2-10-1 2 - w 2= 0f (w2 ) = w6- 5w4+ 7w2= (w2- 2)(w4- 3w2- 2+

9、1) = 05 -1 = 0.618= 1 +5 = 1.618w= 1.414w =w21322振动力学10w2= 3 -5 = 0.382w 2 = 2.0w2= 3 +5 = 2.61812232(K - w 2 M )A = 0é2 - w2êù ì A ü-12 - 2w2-10-1 2 - w1 ïú ï-10í A ý = 0êú2ïïêú2Aû î3 þëì(2 - w

10、2 ) A - A = 0ìïï1 +512ïA1 - A2= 0w ) A - A- A + (2 - 2= 02í2123ï- A + (2 - w 2 ) A = 0îï23í- A1ï+ (-1 +5) A2 - A3= 0ï- A+ 1 +5 A5 -1= 0ïw = 0.618232î12振动力学11ì1 +5A1 - A2= 0ïï2ïí- A1ï+ (-1 +5) A2 - A3 = 0&#

11、239;- A+ 1 +5 A= 0ï232î= 1 +5 = 1.618A = 1.0A = 1.0A1322ì A1 üì1.0üïïïïí A2 ý = í1.618ýF = 1.01.0T1.618ïî A ïþïî1.0ïþ13振动力学12ì(2 - w 2 ) A - A = 01+ (2 - 22ïw ) A - A- A= 02í1

12、2= 03ï- A+ (2 - w 2 ) Aî23F2 = 1.0-1.0T0.0w= 1.41421 +F = 1.01.0T5-0.618w3 = 1.61832振动力学13K A = w2 M AM -1M -1 K A = w 2 AS = M -1 K S A(i)= w 2 A(i+1)振动力学14幂法S = M -1 K S A(i)= w 2 A(i+1)ék1 + k2-k2ém10 ùùú00M = ê 00 úK = ê-k0k + k-kmêê

13、35; 0úm3 úûêêë= m3ú222-k333k3 + k4 úû0k1 = k2= k3= k4 = 1= 1m2 = 2m1-1 2-1é10ùé 20 ù020M = ê00úK = ê-1-1úêêë0ú1úûêêë 0ú2 úû振动力学15S = M -1 K S A(i)= w 2 A(i

14、+1)-1 2-1é10ùé 20 ù020M = ê00úK = ê-1-1úêêë0é1ú1úû00.50êêë 0ú2 úû0ù= ê00úM -1êêë0ú1úû00.50-1 2-1-1 1-1é10ù é 20 ùéù20S =

15、 M -1 K = ê00ú ê-1-1ú = ê-0.5-0.5úêêë0ú ê1úû êë 0ú2 úûêêëúúû02振动力学16-1 1-1éù20S = ê-0.5-0.5úS A(i)= w 2 A(i+1)êêëúúû02ì1ü

16、;= ï ï( 0)í1ýïî1ïþA-1 1-1éù ì1üì1ü20ï ïï ï= ê-0.5úS A( 0) (1)-=0=A0.5ú í1ýí ýêêëûú îï1þïîï1þï02振动力学17-1 1-1

17、33;ù20S = ê-0.5-0.5úS A(i)= w 2 A(i+1)êêëú2úû0ì1ü= ï0ïA(1)í ýïî1ïþ-1 1-1éù ì1üì 2 üìü201-0.5ú ï0ï = ï-ï = 2 ï-0.5ï= ê-0.5S A(

18、1)ú í ýí1ýíýêêëûú îï1þïîï 2 þïîïþï021ìü1= ï-0.5ïA( 2)íýïîïþ1振动力学18ìüìüìüìü11112.5 ï-0

19、.6ï ® 2.6 ï-0.615ï ® 2.615 ï-0.618ï ® 2.618 ï-0.618ïíýíýíýíýïîïþïîïþïîïþïîïþ1111w 2= 2.6183F3 = 11T-0.618振动力学19K A = w2 M AK A = 1

20、 M Al = 1 w 2lM A = l K AK -1 M A = l AK -1T = K -1 M T A(i )= l A(i +1)振动力学20反幂法T A(i )é 2T = K -1 M = l A(i +1)-1 2-1é10ù0 ù020M = ê00úK = ê-1-1úêêë0ú1úû0.51.00.5êêë 0ú2 úûé0.750.25ù= 

21、4; 0.50.5 úK -1êêë0.25ú0.75úû0.51.00.5é0.750.25ù é10ùé0.750.25ù0201.02.01.0T = K -1 M = ê 0.50.5 ú ê00ú = ê 0.50.5 úêêë0.25ú ê0.75úû êë0ú1úûê

22、;êë0.25ú0.75úû振动力学21ì1üT A(i )é0.750.25ù= l A(i +1)1.02.01.0= ï ïT = ê 0.50.5 úA( 0)í1ýïî1ïþêêë0.25ú0.75úûé0.750.25ù ì1üì2üì 1 ü1.02.01

23、.00.5 ú ï ï = ï3ï =ïï= ê 0.5T A( 0)ú í1ýí ý2 í1.5ýîï 1 þïêêë0.250.75ûú îï1þïîï2þïì 1 üìüìüìü111ï

24、;ïïïïïïï2.5 í1.6ý ® 2.6 í1.615ý ® 2.615 í1.618ý ® 2.618 í1.618ýïî 1 ïþïîïþïîïþïîïþ111振动力学22ì 1 üìüìü

25、ìü111ïïïïïïïï2.5 í1.6ý ® 2.6 í1.615ý ® 2.615 í1.618ý ® 2.618 í1.618ýïî 1 ïþïîïþïîïþïîïþ111l = 2.618= 1 = 0.382w 21l

26、F = 11T1.6181振动力学23k1 = k2= k3 = k4 = 1m1 = m3 = 1m2 = 2ì1üx = ïr ïí ýïî1ïþ对称振型振动力学24综合法ì1üx = ïr ïí ýïî1ïþK A = w 2 M A-1 2-1é 20 ù ì1üé10ù ì1ü020ï ï

27、0ú ïr ïê-1úê0= w-2ú í ýú í ý1rêêë 0êëê02 úû îï1þï1ûú îï1þï振动力学25-1 2-1é 20 ù ì1üé10ù ì1ü020ï ï0ú

28、; ïr ïê-1úê0= w-2ú í ýú í ý1rêêë 0êëê02 úû îï1þï1ûú îï1þï2 - r = w 22r - 2 = 2w 2 r- r -1 = 0r2= 1 += 1 -5 = 1.6185 = -0.618rrab22= 3 -= 3 +5 = 0.3825 = 2.

29、618w2w2ab22振动力学26ì 1 üx = ï 0 ïíý称振型ïî-1ïþK A = w 2 M A-1 2-1é 20 ù ì 1 üé10ù ì 1 ü020ïï0ú ï 0 ïê-1úê0w-=2ú íýú íý10êêë 0

30、4;êë02 úû îï-1þï1ûú îï-1þïw 2= 2c振动力学27= 3 -= 3 +5 = 0.3825 = 2.618w 2= 2w2w2cab22= 3 -= 3 +5 = 0.3825 = 2.618w 2= 2w2w221322ìüì 1 üìü11= ïïïïïï1F2 = í 0 ýï

31、;î-1ïþF3 = í-0.618ýFí1.618ý1ïîïþïîïþ1振动力学28K A = w 2 M AK -1= F A = w 2 F M A振动力学29均质简支梁长为L,不计自重在距二支点各L/6处及中点处分别有集中质量m 梁截面的抗弯刚度为EI各阶自振频率及振型振动力学30算例25L3L3d= d33d 22=113888EI48EI13L317L3d= d21= d23 = d32d13= d31 =121296EI3888EI

32、é25ê17 ùúé1ê0ùú398139010L3M = m ê0êë0=F3939ú25úû0ú1úûê3888EIêë17振动力学31A = w 2 F M Aé25ê17 ùú398139w2 mL339úA25úûA=39ê3888EIêë17mw 2 L33888EI ll =w =mL33888EIé2517 ù398139A = l ê3939úAêê

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论