




下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、三角形的角平分线专题课教学设计武陟县实验中学 孙慧玲一、教学内容说明本节课是八年级上册第十二章全等三角形第三节“角平分线的性质”相关知识的应用和延续。以在三角形中,三条内角平分线相交于一点为基本图形展开教学,以解决实际问题为主线,设置了( 1)选址问题( 2)有关角的计算问题( 3)三角形面积问题三个问题的设置围绕一个基本图形展开,互有联系又相互独立,是一个螺旋上升的过程。在解决问题的过程中,注重知识间的联系,对所学角平分线的知识进行整合和升华,在探究过程中锻炼思维习惯,提升数学素养。二、教学目标设置1. 通过解决选址问题,复习回顾角平分线的性质和判定定理;2. 探索角平分线相交所成的角与三角
2、形内角的关系,体会从特殊到一般的数学思想;3. 探究得出三角形的面积与周长之间的关系,进一步感受研究数学问题的方法。为实现教学目标,设置了两条主线:一条明线:角平分线的性质定理及相关应用;一条暗线:从特殊到一般的探究过程,类比的数学思想。三、学生学情分析数学知识:学生刚学习过角平分线的性质与判定定理,对相关知识有所了 解,但不能熟练应用,需要通过系统的学习加以巩固提升; 数学能力:本班学生基础知识扎实,有着良好的学习习惯,推理能力较强, 善于探究、总结、归纳,有合作精神。四、教法与学法教法:启发探究式教学方法;学法:自主探究、合作探究式学习方法。五、教学过程说明三角形面积问题引入选址问题拓展延
3、伸问题课堂总结提升(一)引入新课:问题:为了促进焦作市云台山旅游业的发展, 要在三条公路附近修建度假村,要使度假村到三条公路的距离都相等,应在何处修建?设计意图:通过现实生活中的选址问题引入本课,学生体验数学来源于生活,又应用于生活。通过自主探究,多数同学能回答出:作三角形内角平分线的交点;我进一步追问:只有这一个点符合要求吗?还有没有其他的点?通过追问,激发学生的发散思维,学生通过合作探究得出:三角形外角平 分线的交点也符合要求;这时,我引导学生探究得出:到三角形三边 距离相等的点共有4个,其中1个在三角形内部,3个在三角形外部。之后,以点在三角形内部为例转化为数学问题, 通过规范的证明过程
4、对角平分线的性质和判定定理进行复习回顾。 进一步得出:三角 形的三条角平分线相交于一点,并且这点到三边的距离相等。(二)解决有关角的问题1 .在 ABC 中,BO、CO分另U平分/ ABC和 / ACB /A=80 ,求 / BOC的度数;2 .把问题1中的/A=800这个条件去掉,试探索/ BOC和/A之间的数量关系;,一1结论:/ BOC = 90 ° 十一N A23 .当 /A=90 时,/ BOC=_,/A=60 时, /BOC=,反过来,当/ BOC=110时,/ A=问题设置从特殊到一般,再到应用,培养学生数学思维习惯,初 步体会类比的数学思想;处理原则以学生为课堂主体,
5、独立解决问题并进行讲解,锻炼学生能力。(三)探究三角形面积问题在设计三角形的面积问题时,仍然遵循从特殊到一般的探究过程,学生通过自主探究、合作探究、教师引导探究,得出三角形的面 积与周长的关系,对所学知识进行系统的整合。在探究过程中,养成数学思维习惯,享受研究数学问题的过程和魅力1.如图:已知 ABC的三边AB、BC AC的长分别是8、7、5,OB OC分别平分/ ABC和/ACB, OD)± BC于点D,且OD= 3,求出 ABC的面积;设计意图:这个问题综合了角平分线的性 质和面积问题中的分割法,在解决时需要添加 辅助线,进一步发展学生思维、锻炼学生能力。 课堂上学生先自主探究解
6、决问题,然后由小老 师板演讲解,从而突破教学重点2 .已知 ABC的周长是20淇余条件不变,求出 ABC的面积;问题2的设置有着承上启下的作用,同学们通过合作探究、互帮 互助解决问题,教师检查学习效果,同时出示规范的解答过程,为问 题3做好铺垫。3 .把问题2中4ABC的周长换为l, OD= a,其余条件不变,请直接用含1、a的代数式表示 ABC的面积$问题3是本节课的重难点,不仅体现了类比的数学思想,更贯穿 了研究数学问题中从特殊到一般的思想方法,是之前学习的总结提 开,也是本节课的升华。在教学时我进行适当点拨,学生总结提升。(四)拓展延伸在 4ABC 中,/ B=90 , AB=5, BC
7、=1Z AC=13在 ABC 内是否有一点P到各边的距离相等?若有,请求出这个距离。拓展延伸环节是本节课的一个制高点, 学有余力的同学在之前学习的经验上能够解决,满足了学生多样化的学习需求。(五)课堂总结课堂总结分为知识总结和数学思想方法的总结, 注重渗透数学思维习惯,学生体会学数学用数学的魅力。数学知识1 .三角形的三条角平分线交于一点,这点到三边的距离相等;2 .角平分线相交所成的角与三角形内角之间的关系;3 .三角形的面积与周长、角平分线的交点到三边距离之间的关系。数学思想方法采用了类比的学习方法, 经历了由特殊到一般的探究过程, 这些数学思想方法会帮助我们在今后的学习中解决更多的问题。六、我的一点反思设计本节课时, 还有第二种思路: 以探讨三角形内角平分线相交所成的角为背景, 进一步探讨外角平分线相交所成的角、 一个内角与一个外角平分线所成的角与三角形内角的关系。 由于本节课围绕一个基本图形展开研究, 所以第二种思路又另外设计了一节专题课作为姊妹篇。纵
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025安全标准化安全培训考试试题下载
- 2024-2025新版车间安全培训考试试题A卷附答案
- 2025年企业主要负责人安全培训考试试题附参考答案(典型题)
- 2025年管理人员安全培训考试试题附参考答案【能力提升】
- 2025-2030年中国LED显示屏市场发展形势与产业投资风险研究报告
- 2025班组三级安全培训考试试题及参考答案(典型题)
- 2025年公司及项目部安全培训考试试题带答案(培优B卷)
- 2025公司项目负责人安全培训考试试题附参考答案【培优】
- 2025年新入职工职前安全培训考试试题答案真题汇编
- 2025至2031年中国白18k珍珠吊坠行业投资前景及策略咨询研究报告
- JJF 1272-2011阻容法露点湿度计校准规范
- 基于模糊控制的移动机器人的外文翻译
- 鲁迅《药》课本剧剧本
- 二年级下册科学教案 第三单元1.《春夏秋冬》 大象版
- 低压电工安全培训课件-
- 充电桩的施工方案
- 远古苗族的-附丽于古歌和刺绣
- TSG-R0005-2022《移动式压力容器安全技术监察规程》(2022版)
- 【推荐】大华“智慧消防”物联网综合管理解决方案
- 2022年CASEAR2简易操作手册
- 中国墓葬文化(专业应用)
评论
0/150
提交评论