




下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、第一章绪论一、是非判断题1.1 材料力学的研究方法与理论力学的研究方法完全相同。(X )1.2 内力只作用在杆件截面的形心处。(X )1.3 杆件某截面上的内力是该截面上应力的代数和。(X )1.4 确定截面内力的截面法,适用于不论等截面或变截面、直杆或曲杆、基本变形或组合变形、横截面或任意截面的普遍情况。(V )1.5 根据各向同性假设,可认为材料的弹性常数在各方向都相同。(V )1.6 根据均匀性假设,可认为构件的弹性常数在各点处都相同。(V )1.7 同一截面上正应力。与切应力必相互垂直。(V )1.8 同一截面上各点的正应力。必定大小相等,方向相同。(X )1.9 同一截面上各点的切应
2、力丁必相互平行。(X )1.10 应变分为正应变£和切应变性(V )1.11 应变为无量纲量。(V )1.12 若物体各部分均无变形,则物体内各点的应变均为零。(V )1.13 若物体内各点的应变均为零,则物体无位移。(X )1.14 平衡状态弹性体的任意部分的内力都与外力保持平衡。(V )1.15 题1.15图所示结构中,AO杆发生的变形为弯曲与压缩的组合变形。(V )1.16 题1.16图所示结构中,A8杆将发生弯曲与压缩的组合变形。(X )广一7777:(题1.15图题1.16图二、填空题1.1 材料力学主要研究杆件 受力后发生的变形,以及由此产生 的应力,应变。1.2 拉伸或
3、压缩的受力特征是外力的合力作用线通过杆轴线,变形特征 是沿杆轴线伸长或缩短 O1.3 剪切的受力特征是受一对等值,反向,作用线距离很近的力的作用,变形特征沿剪切面发生相对错动是 O1.4 扭转的受力特征是外力偶作用面垂直杆轴线,变形特征是任意二横截面发生绕杆轴线的相对转动。1.5 弯曲的受力特征是外力作用线垂直杆轴线,外力偶作用面通过杆轴线,变形特 征是 梁轴线由直线变为曲线。1.6 组合受力与变形是指 包含两种或两种以上基本变形的组合 o1.7 构件的承载能力包括强度 ,刚度 和稳定性 三个方面。1.8 所谓强度,是指材料或构件抵抗破坏的能力。所谓刚度,是指构件抵抗变形 的能力。所谓稳定性,
4、是指材料或构件保持其原有平衡形式的能力。1.9 根据固体材料的性能作如下三个基本假设连续性,均匀性,各向同性。1.10 认为固体在其整个几何空间内无间隙地充满了组成该物体的物质,这样的假设称 为连续性假设。根据这一假设构件的应力、应变和变形等就可以用坐标的连续函数来表示。尸1.11 填题1.11图所示结构中,杆1发生包 变形,/一p杆2发生压缩 变形,杆3发生弯曲变形。1.12 下图(a)、(b)、(c)分别为构件内某点处取出的单元体,变形 歼填题1.11图后情况如虚线所示,则单元体的切应变y= 2 a ;单元体 (b)的切应变卜=a-0 :单元体(c)的切应变y=Q。三、选择题1.1 选题1
5、.1图所示直杆初始位置为A6C,作用力P后移至但右半段6CQE的形状不发生变化。试分析哪一种答案正确。PA'/c-一四一E1一一一一«L一DI1、AB、BC两段都产生位移。2、AB、BC两段都产生变形。正确答案是10选题1.1图1.2 选题1.2图所示等截面直杆在两端作用有力偶,数值为M,力偶作用面与杆的对称面一致。关于杆中点处截面AA在杆变形后的位置(对于左端,由A' A'表示;对 于右端,由A” 一A”表示),有四种答案,试判断哪一种答案是正确的。A正确答案是C 0“(旺丁十三“时,6三半时一"* A(A)(B)AA,A,1选题1.2图(C)(D
6、)1.3等截面直杆其支承和受力如图所示。关于其轴线在变形后的位置(图中虚线所示),有四种答案,根据弹性体的特点,试分析哪一种是合理的。正确答案是选题1.3图第二章拉伸、压缩与剪切一、是非判断题2.1 因为轴力要按平衡条件求出,所以轴力的正负与坐标轴的指向一致。(X )2.2 轴向拉压杆的任意截面上都只有均匀分布的正应力。(X )2.3 强度条件是针对杆的危险截面而建立的。(X )2.4 .位移是变形的量度。(X )2.5 甲、乙两杆几何尺寸相同,轴向拉力相同,材料不同,则它们的应力和变形均相同。(X )2.6 空心圆杆受轴向拉伸时,在弹性范围内,其外径与壁厚的变形关系是外径增大且壁厚也 同时增
7、大。(X )2.7 已知低碳钢的%=200MPa, E=200GPa,现测得试件上的应变£=0.002,则其应力能用胡克定律计算为:a=£=200X 103 X0.002=400MPao( X )2.9 图示三种情况下的轴力图是不相同的。(X )2.10 图示杆件受轴向力户n的作用,C、。、E为杆件46的三个等分点。在杆件变形过程中,此三点的位移相等。2.11 对于塑性材料和脆性材料,在确定许用应力时,有相同的考虑。(X )2.12 连接件产生的挤压应力与轴向压杆产生的压应力是不相同的。(V )二、填空题2.1 轴力的正负规定为拉力为正,压力为负 o2.2 受轴向拉伸或压缩
8、的直杆,其最大正应力位于理截面,计算公式为皿=(Ev/4)皿最大切应力位于 45。 截面,计算公式为 max /2 (尸n /2A)max。2.3 拉压杆强度条件中的不等号的物理意义是 最大工作应力Omax不超过许用应力9,强度条件主要解决三个方面的问题是(1)强度校核:(2) 截面设计:(3)确定许可载荷 o2.4 轴向拉压胡克定理的表示形式有2种,其应用条件是 2 W(Jp o2.5 由于安全系数是一个/于I数,因此许用应力总是比极限应力要一小2.6 两拉杆中,A1=A2=A; Ei = 2E2; Di=2D2;若 £i,= £2'(横I可应变),则二杆轴力 F
9、ni_=_Fn2。2.7 低碳钢在拉伸过程中依次表现为 弹性 、 屈服 、 强化 、局部变形四个阶段,其特征点分别是 5), re, 6, 5 o2.8 衡量材料的塑性性质的主要指标是延伸率6、 断面收缩率w 02.9 延伸率3= (LiL) /LxlOO%中Li指的是 拉断后试件的标距长度。2.10 塑性材料与脆性材料的判别标准是塑性材料:6 25%,脆性材料:8 <5%。2.11 图示销钉连接中,2,2>小销钉的切应力工=亚量,销钉的最大挤压应力。b,= F/dt】。2.12 螺栓受拉力尸作用,尺寸如图。若螺栓材料的拉伸许用应力为司,许用切应力为司,按 拉伸与剪切等强度设计,螺
10、栓杆直径d与螺栓头高度的比值应取九=4b/。2.13 木梯接头尺寸如图示,受轴向拉力尸作用。接头的剪切面积寸=hb,切应力 i= F/hb; 挤压面积 4员= cb, 挤压应力 0bs= F/cb。2.14 两矩形截面木杆通过钢连接器连接(如图示),在轴向力尸作用下,木杆上下两侧的剪切面积,切应力工=F/21b :挤压面积Abs=2bb ,挤压应力0b产F/2 6b。2.15 挤压应力与压杆中的压应力有何不同挤压应力作用在构件的外表面,一般不是均匀分 布;压杆中的压应力作用在杆的横截面上且均匀分布。2.16 图示两钢板钢号相同,通过钾钉连接,钉与板的钢号不同。对钾接头的强度计算应包括:聊钉的剪
11、切、挤压计算;钢板的挤压和拉伸强度计算。若将钉的排列由(a)改为(b),上述计算中发生改变的是 o对于(a)、(b)两种排列,钟接头能承受较大拉力的是(。)。(建议画板的轴力图分析)三、选择题2.17 提高某种钢制拉(压)杆件的刚度,有以下四种措施:(A)将杆件材料改为高强度合金钢;(B)将杆件的表面进行强化处理(如淬火等);(C)增大杆件的横截面面积;(D)将杆件横截面改为合理的形状。正确答案是一 C2.18 、乙两杆,几何尺寸相同,轴向拉力厂相同,材料不同,它们的应力和变形有四种可 能:(A)应力b和变形/都相同;(B)应力b不同,变形相同;(C)应力o相同,变形不同; (D)应力b不同,
12、变形不同。正确答案是 C2.19 度和横截面面积均相同的两杆,一为钢杆,另一为铝杆,在相同的轴向拉力作用下, 两杆的应力与变形有四种情况;(A)铝杆的应力和钢杆相同,变形大于钢杆;(B)铝杆的应力和钢杆相同,变形小于钢杆;(C)铝杆的应力和变形均大于钢杆;(D)铝杆的应力和变形均小于钢杆。口、正确答案是 A2.20 弹性范围内尺寸相同的低碳钢和铸铁拉伸试件,在同样载荷作用下,低碳钢试件的弹性变形为4,铸铁的弹性变形为则4与的关系是;V Ems > Eci(A) 4>& ;(B) 4 <S2 ;(C)=62 ;(D)不能确定。见P33,表22正确答案是 B2.21 直杆
13、在轴向拉伸或压缩时,横截面上正应力均匀分布是根据何种条件得出的。(A)静力平衡条件;(C)小变形假设;(B)连续条件;(D平面假设及材料均匀连续性假设。正确答案是一 O第三章扭转一、是非判断题3.1 单元体上同时存在正应力和切应力时,切应力互等定理不成立。(X )3.2 空心圆轴的外径为O、内径为d ,其极惯性矩和扭转截面系数分别为I =贮一贮叱=好_型I( X )P 3232'16163.3 材料不同而截面和长度相同的二圆轴,在相同外力偶作用下,其扭矩图、切应力及相对扭转角都是相同的。(X )3.4 连接件承受剪切时产生的切应力与杆承受轴向拉伸时在斜截面上产生的切应力是相同的。二、填
14、空题3.1 图示微元体,已知右侧截面上存在与z方向成。角的切应力一试根据切应力互等定理画出另外五个面上的切应力。3.2 试绘出圆轴横截面和纵截面上的扭转切应力分布图。3.3 保持扭矩不变,长度不变,圆轴的直径增大一倍,则最大切应力&是原来的二丝倍,单位长度扭转角是原来的 1/倍。3.4 两根不同材料制成的圆轴直径和长度均相同,所受扭矩也相同,两者的最大切应力相等 ,单位长度扭转不同 o3.5 公式丁 =必的适用范围是等直圆轴;TmaxW f Ip3.6 对于实心轴和空心轴,如果二者的材料、长度及横截面的面积相同,则它们的抗扭能力空心轴大于实心轴;抗拉(压)能力 相同 o3.7 当轴传递
15、的功率一定时,轴的转速愈小,则轴受到的外力偶距愈_±_,当外力偶距一 定时,传递的功率愈大,则轴的转速愈 大 。3.8 两根圆轴,一根为实心轴,直径为Di,另一根为空心轴,内径为电,外径为。2,& =2=08,若两轴承受的扭矩和最大切应力均相同,则2=讥,"=°84 0d2d23.9 等截面圆轴上装有四个皮带轮,合理安排应为C轮位置对调0(单位:kN*m)3.10 图中T为横截面上的扭矩,试画出图示各截面上的切应力分布.图。3.11 由低碳钢、木材和灰铸铁三种材料制成的扭转圆轴试件,受扭后破坏现象呈现为:图(b), 扭角不大即沿45。螺旋面断裂;图(c),
16、发生非常大的扭角后沿横截面断开;图(d), 表面出现纵向裂纹。据此判断试件的材料为,图(b):灰铸铁;图(c): 低碳钢, 图(d):木材。若将一支粉笔扭断,其断口形式应同图(b).B. 20 N*m ;C. 15N-m ;D. 10N,m o3.2三根圆轴受扭,已知材料、角6必为DBCH-H直径、扭矩均相同,而长度分别为L; 2L; 4L,则单位扭转三、选择题3.1图示圆轴,己知G/p,当帆为何值时,自由端的扭转角为零。(B )A. 30 N,m :3.3 实心圆轴和空心圆轴, 是C。A z空实.1 max / c max '3.4 一个内外径之比为G =它们的横截面面积均相同,受相
17、同扭转作用,则其最大切应力 (明)空(吗)实B.咪x; C咪x;D.无法比较。:d/Q的空心圆轴,扭转时横截面上的最大切应力为八则内圆周处 尸2 i尸2A.第一根最大;B.第三根最大;C.第二根为第一和第三之和的一半;D.相同 <ZZDO-的切应力为 B。A. r; B. ar; C. (1a3) r; D. (1a4) r;3.5满足平衡条件,但切应力超过比例极限时,下列说法正确的是D,ABCD切应力互等定理:成立不成立不成立成立剪切虎克定律:成立不成立成立不成立3.6在圆轴扭转横截面的应力分析中,材料力学研究横截面变形几何关系时作出的假设是 C OA.材料均匀性假设;B.应力与应变成
18、线性关系假设;C.平面假设。3.7图示受扭圆轴,若直径d不变;长度/不变,所受外力偶矩M不变,仅将材料由钢变为 铝,则轴的最大切应力(E),轴的强度(B),轴的扭转角(C),轴的刚度(B )。A.提高 B.降低 C.增大 D.减小 E.不变第四章弯曲内力一、是非判断题4.1 杆件整体平衡时局部不一定平衡。(X )4.2 不论梁上作用的载荷如何,其上的内力都按同一规律变化。(X )4.3 任意横截面上的剪力在数值上等于其右侧梁段上所有荷载的代数和,向上的荷载在该截 面产生正剪力,向下的荷载在该截面产生负剪力。(X )4.4 若梁在某一段内无载荷作用,则该段内的弯矩图必定是一直线段。(V )4.5
19、 简支梁及其载荷如图所示,假想沿截面mm将梁截分为二,若取梁的左段为研究对象, 则该截面上的剪力和弯矩与q、M无关;若取梁的右段为研究对象,则该截面上的剪力 和弯矩与尸无关。(X )二、填空题4.1 外伸梁ABC承受一可移动的载荷如图所示。设F、/均为 已知,为减小梁的最大弯矩值则外伸段的合理长度a= 1/5。 :Fa =F(/-«)/44.2 图示三个简支梁承受的总载荷相同,但载荷的分布情况不同。在这些梁中,最大剪力FQmax=F/2 ;发生在 三个 梁的支座 截面处;最大弯矩Mmx=F4 ;发生在(a)梁的。截面处。三、选择题4.1梁受力如图,在6截面处 D 。Fa.凡图有突变,
20、m图连续光滑;/jrni liltB.Fs图有折角(或尖角),M图连续光滑;<aBC.Fs图有折角,M图有尖角;题4.1图D.Fs图有突变,M图有尖角。题4.2图1.2 图示梁,剪力等于零截面位置的x之值为 D 。A. 567/6;B. 5R6;C. 6R7;D. 7a/6。1.3 在图示四种情况中,截面上弯矩M为正,剪力R为负的是(B)A"M口D G口口 (IDMM(A)(B)(C)(D)面上弯矩Me之间的关系是B 。VMc=FDa = 2«F/3Mniax = FD2« = 4aF/31.4 在图示梁中,集中力F作用在固定于截面B的倒L刚臂上。梁上最大弯
21、矩M皿x与C截A.河皿- Mc=FaB. Mmax = 2McC. Mm + 班=FaD. Mc4.5在上题图中,如果使力F直接作用在梁的C截面上,则梁上附叫与Ek,为C 。A.前者不变,后者改变B.两者都改变C.前者改变,后者不变D.两者都不变附录I平面图形的几何性质一、是非判断题L1静矩等于零的轴为对称轴。(X )1.2 在正交坐标系中,设平面图形对y轴和z轴的惯性矩分别为&和人,则图形对坐标原点 的极惯性矩为/p = /1,2十/J。( X )1.3 若一对正交坐标轴中,其中有一轴为图形的对称轴,则图形对这对轴的惯性积一定为零。(V)二、填空题1.1 任意横截面对形心轴的静矩等于
22、01.2 在一组相互平行的轴中,图形对为£轴的惯性矩最小。三、选择题L1矩形截面,。为形心,阴影面积对ZC轴的静矩为(Sz)A, 其余部分面积对X轴的静矩为(Sz)5,(Sz)A与(Sz)5之 间的关系正确的是一 D 。A. (SZ)A>(SZ)B;C. (Sz)A =(Sz)B;B.(Sz)aV(Sz)b;D. (Sz)A= (Sz)8。1.2 图示截面对形心轴ZC的Wzc正确的是一 B cA. bH2/6-bh2/6 ;B. (b”2/6) (1- (h/H) 3);C. (bh2/6) (1- (”/)3);D.(协2/6) (1- (”7)4)。1.3 已知平面图形的形
23、心为C,面积为A,对z轴的惯性矩为则图形对在Z1轴的惯性矩正确的是A. /z+/?2A ;B. &十(。十b)%;C. /z十(。2-/?2)A;D. /z+( A o选题1.1图选题L2图第五章弯曲应力一、是非判断题5.1 平面弯曲变形的特征是,梁在弯曲变形后的轴线与载荷作用面同在一个平面内。(V )5.2 在等截面梁中,正应力绝对值的最大值皿x必出现在弯矩值|皿最大的截面上。 (V )5.3 静定对称截面梁,无论何种约束形式,其弯曲正应力均与材料的性质无关。(V ) 二、填空题5.1 直径为d的钢丝维在直径为D的圆筒上:若钢丝仍处于弹性范围内,此时钢丝的最大弯 2E d _ E曲正
24、应力。皿X=_ D + d X5l+£)/d _;为了减小弯曲正应力,应减小钢丝的直径或增大 圆筒 的直径。5.2 圆截面梁,保持弯矩不变,若直径增加一倍,则其最大正应力是原来的1/8 倍。5.3 横力弯曲时,梁横截面上的最大正应力发生在 截面的上下边缘处,梁横截面上的最大切应力发生在中性轴处。矩形截面的最大切应力是平均切应力的卫倍。5.4 矩形截面梁,若高度增大一倍(宽度不变),其抗弯能力为原来的 4 倍;若宽度增大一倍(高度不变),其抗弯能力为原来的2 倍;若截面面积增大一倍(高宽比不变),其抗弯能力为原来的 倍。5.5 从弯曲正应力强度的角度考虑,梁的合理截面应使其材料分布远离
25、中性轴 .5.6 两梁的几何尺寸和材料相同,按正应力强度条件,(B)的承载能力是(A)的 5 倍。5.7图示“T”型截面铸铁梁,有(A)、(B)两种截面放置方式,较为合理的放置方式第六章弯曲变形一、是非判断题6.1 正弯矩产生正转角,负弯矩产生负转角。(X )6.2 弯矩最大的截面转角最大,弯矩为零的截面上转角为零。(X )6.3 弯矩突变的地方转角也有突变。(X )6.4 弯矩为零处,挠曲线曲率必为零。(V )6.5 梁的最大挠度必产生于最大弯矩处。(X )二、填空题6.1 梁的转角和挠度之间的关系是回x)"(x)。6.2 梁的挠曲线近似微分方程的应用条件是等直梁、线弹性范围内和小
26、变形°6.3 画出挠曲线的大致形状的根据是约束和弯矩图 o判断挠曲线的凹凸性与拐点位置的根据是弯矩的正负;正负弯矩的分界处6.4 用积分法求梁的变形时,梁的位移边界条件及连续性条件起确定积分常数的作用。6.5 梁在纯弯时的挠曲线是圆弧曲线,但用积分法求得的挠曲线却是抛物线,其原因是用积分法求挠曲线时,用的是挠曲线近似方程6.6 两悬臂梁,其横截面和材料均相同,在梁的自由端作用有大小相等的集中力,但一梁的长度为另一梁的2倍,则长梁自由端的挠度是短梁的 8 倍,转角又是短梁的 4 倍。6.7 应用叠加原理的条件是线弹性范围内和小变形 o6.8 试根据填题6.8图所示载荷及支座情况,写出由
27、积分法求解时,积分常数的数目及确定积分常数的条件。积分常数 6 个;支承条件= 0,氏=0, w b = 0 o连续条件是Wc-L = Wc-R , WBL = WBR,仇 I. = BR o6.9 试根据填题6.9图用积分法求图示挠曲线方程时,需应用的支承条件是w B = 0, Wd = 0;连续条件是 WCL = WCR , WBL = WBR ,夕 BL 二夕 BR o填题6.8图填题6.9图第七章应力和应变分析强度理论一、是非判断题7.1纯剪应力状态是二向应力状态。(V )7.2一点的应力状态是指物体内一点沿某个方向的应力情况。(X )7.3轴向拉(压)杆内各点均为单向应力状态。(V
28、)7.4单元体最大正应力面上的切应力恒等于零。(V )7.5单元体最大切应力面上的正应力恒等于零。(X )7.6等圆截面杆受扭转时,杆内任一点处沿任意方向只有切应力,无正应力。(X )7.7单元体切应力为零的截面上,正应力必有最大值或最小值。(X )7.8主方向是主应力所在截面的法线方向。(V )7.9单元体最大和最小切应力所在截面上的正应力,总是大小相等,正负号相反。(X )7.10一点沿某方向的正应力为零,则该点在该方向上线应变也必为零。(X )二、填空题7.1 一点的应力状态是指过一点所有截面上的应力集合,一点的应力状态可以用 单元体和应力圆 表示,研究一点应力状态的目的是解释构件的破坏
29、现象;建立复杂应力状态的强度条件。向是指主平面的法线方向7.2 主应力是指 主平面上的正应力;主平面是指0的平面:主方、.乂 一。-一-I一二直的平面上0的单元体。 三个主应力中只有一个不为0 '巨削干回工厂U阳外兀砰7.3 对任意单元体的应力,当 时是单向应力状态;当三个主应力中有二个不为°时是二向应力状态;当三个主应力都不为。时是三向应力状态;当单元体各侧面上只有切应力时是纯剪切应力状态。7.4 在二个主应力相等的情况下,平面应力状态下的应力圆退化为一个点圆;在 纯剪切 情况下,平面应力状态下的应力圆的圆心位于原点;在单向应力状态情况下,平面应力状态下的应力圆与。轴相切。
30、7.5 应力单元体与应力圆的对应关系是: 点面对应 ; 转向相同; 转角二倍。7.6对图示受力构件,试画出表示A点应力状态的单元体。三、选择题7.1图示单元体所描述的应力状态为平面应力状态,该点所有斜方向中最大的切应力为 CA. 15 MPaC. 40 MPaB. 65 MPaD. 25 MPa(a)(b)(c)(d)7.3单元体斜截面上的正应力与切应力的关系中AA.正应力最小的面上切应力必为零;B.最大切应力面上的正应力必为零; C.正应力最大的面上切应力也最大; D.最大切应力面上的正应力却最小。第八章组合变形一、是非判断题8.1材料在静荷作用下的失效形式主要有脆性断裂和塑性屈服两种。(V
31、 )8.2砖、石等脆性材料的试样在压缩时沿横截面断裂。(X )8.3在近乎等值的三向拉应力作用下,钢等塑性材料只可能发生断裂。(V )8.4不同的强度理论适用于不同的材料和不同的应力状态。(V )8.5矩形截面杆承受拉弯组合变形时,因其危险点的应力状态是单向应力,所以不必根据强度理论建立相应的强度条件。(V )8.6圆形截面杆承受拉弯组合变形时,其上任一点的应力状态都是单向拉伸应力状态。(X )8.7拉(压)弯组合变形的杆件,横截面上有正应力,其中性轴过形心。(X )8.8设计受弯扭组合变形的圆轴时,应采用分别按弯曲正应力强度条件及扭转切应力强度条件进行轴径设计计算,然后取二者中较大的计算结果
32、值为设计轴的直径。(X )8.9弯扭组合圆轴的危险点为二向应力状态。(V )8.10立柱承受纵向压力作用时,横截面上只有压应力。偏心压缩呢?(X )填空题8.1 铸铁制的水管在冬天常有冻裂现象,这是因为且远远大了6,6 ;。瓜较小。8.2 将沸水倒入厚玻璃杯中,如果发生破坏,则必是先从外侧开裂,这是因为外侧有较大拉应力产生且6,较小8.3 弯扭组合构件第三强度理论的强度条件可表达为外=亚1三工同 或刊尸+075(尸)7%工匕 W该条件成立的条件是杆件截面为圆截面或圆环截面,且杆件材料应为塑性材料C8.4 塑性材料制的圆截面折杆及其受力如图所示,杆的横截面面积为A,抗弯截面模量为W, 则图的危险
33、点在 A 截面的上下边缘 ,对应的强度条件 为J(f7)2+(产力2图(b)的危险点在AB段内任意截面的后边缘点,对应 的强度条件为|f1斗4臼| ;试分别画出两图危险点的应力状态。A W 第九章压杆稳定一、是非判断题9.1 所有受力构件都存在失稳的可能性。9.2 在临界载荷作用下,压杆既可以在直线状态保持平衡,也可以在微弯状态下保持平衡。(X )9.3 引起压杆失稳的主要原因是外界的干扰力。(X )9.4 所有两端受集中轴向力作用的压杆都可以采用欧拉公式计算其临界压力。(X )9.5 两根压杆,只要其材料和柔度都相同,则他们的临界力和临界应力也相同。(X )9.6 临界压力是压杆丧失稳定平衡
34、时的最小压力值。(V )9.7 用同一材料制成的压杆,其柔度(长细比)愈大,就愈容易失稳。(V)9.8 只有在压杆横截面上的工作应力不超过材料比例极限的前提下,才能用欧拉公式计算其临界压力。(X )9.9 满足强度条件的压杆不一定满足稳定性条件;满星程宗怦条性的压杆也不一定满足强度 条件。有应力集中时(v)9.10 低碳钢经过冷作硬化能提高其屈服极限,因而用同样的方法也可以提高用低碳钢制成的细长压杆的临界压力。一、班上黜长度0,约束(),横截9.1 压杆的柔度4综合地反映了压杆的_面的形状和大小(力_对临界应力的影响。9.2 柔度越大的压杆,其临界应力越 小 ,越容易 失稳。|几=万刃/(“尸
35、9.3 影响细长压杆临界力大小的主要因素有 £, IJJI o9.4 如果以柔度人的大小对压杆进行分类,则当的杆称为大柔度杆,当 人2入入1的杆称为中柔度杆,当 £二2的杆称为短粗杆。9.5大柔度杆的临界应力用 6,二凡 欧拉 公式计算,中柔度杆的临界应力用b”a b入 经验 公式计算,短粗杆的临界应力用 强度 公式计算。9.6 两端为球较支承的压杆,其横截面形状分别如图所示,试画出压杆失稳时横截面绕其转动的轴。.Is _ /12TTxa2 xa2/12冗,1R 向寸64血?/4x ?/4xl/4 39.7 两根细长压杆的材料、长度、横截面面积、杆端约束均相同,一杆的截面形
36、状为正方(矩) 形,另一杆的为圆形,则先丧失稳定的是圆 截面的杆。 /min的轴三、选择题9.1 图示a, b, c,d四桁架的几何尺寸、圆杆的横截面直径、材料、加力点及加力方向均相 同。关于四行架所能承受的最大外力Fpwx有如下四种结论,则正确答案是d o(A)尸Pm")=尸Pmax(G < 3max3)=的皿耳 max0 =尸PmaxO =尸PmaxG)=尸Pmax(")(C)尸Pmax()=尸Pmax(d) V 尸PmaxS)=尸Pmax(。)(D)尸Pm")=尸PmaxG) < Pmax© = FPAd)9.2 同样材料、同样截面尺寸
37、和长度的两根管状细长压杆两端由球较链支承,承受轴向压缩 载荷,其中,管a内无内压作用,管b内有内压作用。关于二者横截面上的真实应力。(a)与。(b)、临界应力。cr(a)与。cr(b)之间的关系,有如下结论。则正确结论是o(A) o (a) >o (b) , 0ty (a)=。夕(b) ; (B)。(a) =o (b) ,(a) <oCT (b)(C) O (a) <O (b) , 0ty (a)(b) ; (D) o (a) <o (b),(a)二。行(b)9.3 提高钢制细长压杆承载能力有如下方法。试判断哪一种是最正确的。(A)减小杆长,减小长度系数,使压杆沿横截面
38、两形心主轴方向的长细比相等;(B)增加横截面面积,减小杆长;(C)增加惯性矩,减小杆长;(D)采用高强度钢。正确答案是A o<ycr =亢,9.4 圆截面细长压杆的材料及支承情况保持不变,将其横向及轴向尺寸同时增大1倍,压杆 的 A 。(A)临界应力不变,临界力增大;(B)临界应力增大,临界力不变;(C)临界应力和临界力都增大;(D)临界应力和临界力都不变。第十章动载荷一、是非题10.1 只要应力不超过比例极限,冲击时的应力和应变仍满足虎克定律。(v)10.2 凡是运动的构件都存在动载荷问题。(X )10.3 能量法是种分析冲击问题的精确方法。(X )10.4 不论是否满足揭官条件,只要
39、能增加杆件的静位移,就能提高其抵抗冲击的能力。 应在弹性范围内Z 乂 二、填空题10.1图示各梁的材料和尺寸相同,但支承不同,受相同的冲击载荷,则梁内最大冲击应力由大到小的排列顺序是(a)、(c)、(b) o10.2图示矩形截面悬臂梁,长为L,弹性模量为E,截面宽为b,高为h=2b,受重量为P 的自由落体的冲击,则此梁的冲击动荷系数Kd= 1 + +(给出表达式),若H>>>当产值增大一倍时,梁内的最大动应力增大及T倍?当“增大一倍时,梁内的最大动应力 增大一五-1_倍?当L增大一倍时,梁内的最大动应力增大_亍一】倍?当b增大一倍时,梁内 的最大动应力增大倍?. =灰 =图
40、_ I 2H Pl 4HEb 3PI _ 3 伊丽 .=亚”"皿、=P/J/3EZW=V pr W = bT1) P增大一倍时:2) H增大一倍时:/3),增大一倍时:*一心bdmax =-%4)方增大一倍时:</厘=也皿dmax -第H一章交变应力一、是非判断题n.i构件在交变应力下的疲劳破坏与静应力下的失效本质是相同的。(x)11.2 通常将材料的持久极限与条件疲劳极限统称为材料的疲劳极限。(V )11.3 材料的疲劳极限与强度极限相同。(X )11.4 材料的疲劳极限与构件的疲劳极限相同。(X )一、填空题11.1 表示交变应力情况的有5个量值:Om (平均应力),(应力
41、幅),K循环特征),及Qmax 和。皿,其中只有 2 个是独立的。11.2 某构件内一点处的交变应力随时间变化的曲线如图所示,则该交变应力的循环特征是 05 、最大应力是 lOOMPa ,最小应力是50MPa,平均应力是25MPa 。11.3 疲劳破坏的三个阶段:裂纹的产生,裂纹扩展,脆性断裂。11.4 疲劳破坏的主要特征有1)破坏时6(6); 2)破坏前经过一定的应力循环次数;3)破坏为脆性断裂;4)断口有光滑区和粗糙区°11.5 提高构件疲劳强度的主要措施: 减缓构件的应力集中, 降低构件表面粗糙度;增加构件表层强度。11.6 有效应力集中系数不仅与构件的形状、尺寸有关,而且与材料的强度极限6有关。11.7 三根材料相同的试件,分别在循环特征r =-1, r = 1, r = 0. 5的交变应力下进行疲 劳试验,则:(1) r =的持久极限最大;(2) r =的持久极限最小。11.8 如零件的规定安全系数为n,疲劳工作安全系数为no ,则用安全系数表示的疲劳强度 条件为 之。11.9 螺栓受轴向的最大拉力Pmax=6kN,最小拉力Pmm = 5 kN作用;螺栓直径d = 12 mm, 则其交变应力的循环特征r =
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 浙江省金丽衢十二校2023-2024学年高三上学期第一次联考英语 含解析
- 2024年湖南省卫生健康委直属事业单位考试真题
- 大学化学考试反应条件试题及答案
- 贵州省三支一扶考试真题2024
- 2024年厦门市直属学校选调教师真题
- 家具设计的用户体验优化试题及答案
- 施工安全监督机制的核心试题及答案
- 大学物理线上线下教学结合试题及答案
- 2025年离合器压盘合作协议书
- 数与事实试题及答案深度分析
- 2025年4月新高考语文全国Ⅰ卷各地模考试题汇编之语用
- 山东省聊城市2025年高考模拟试题(二)数学+答案
- 小学数学西师大版(2024)三年级下册旋转与平移现象教学设计
- (一模)惠州市2025届高三4月模拟考试英语试卷(含答案)
- 田园综合体可行性研究报告
- 2025年中考语文二轮复习:散文阅读 专题练习题(含答案)
- 2025届新高考教学教研联盟高三第二次联考政治试题及答案
- 赌博酒驾警示教育
- 产业园物业管理实施方案
- 管理学基础-形考任务三-国开-参考资料
- 梁晓声母亲测试题及答案
评论
0/150
提交评论