傅里叶(Fourier)级数的指数形式与傅里叶变换_第1页
傅里叶(Fourier)级数的指数形式与傅里叶变换_第2页
傅里叶(Fourier)级数的指数形式与傅里叶变换_第3页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、傅里叶(Fourier )级数的指数形式与傅里叶变换专题摘要:根据欧拉(Euler)公式,将傅里叶级数三角表示转化为指数表示,进而得到傅 里叶积分定理,在此根底上给出傅里叶变换的定义和数学表达式。在通信与信息系统、交通信息与控制工程、信号与信息处理等学科中,都需要对各种 信号与系统进行分析。通过对描述实际对象数学模型的数学分析、求解,对所得结果给以物理解释、赋予其物理意义,是解决实际问题的关键。这种数学分析方法主要针对确定性信号 的时域和频域分析,线性时不变系统的描述以与信号通过线性时不变系统的时域分析与变换 域分析。所有这些分析方法都离不开傅里叶变换、拉普拉斯变换和离散时间系统的z变换。而傅

2、里叶变换的理论根底是傅里叶积分定理。傅里叶积分定理的数学表达式就是傅里叶级数的指数形式。不但傅里叶变换依赖于傅里叶级数,就是纯数学分支的调和分析也来源于函数的傅里 叶级数。因此,傅里叶级数无论在理论研究还是在实际应用中都占有非常重要的地位。我们成认满足狄里克莱(Dirichlet )条件下傅里叶级数的收敛性结果,不去讨论和深究傅里叶 展式的唯一性问题。傅里叶级数的指数形式一个以T为周期的函数f(t),在T,T上满足狄里克莱条件:l°f(t)连续或只有有 限个第一类间断点;2°只有有限个极值点。 那么f (t)在T , T上就可以展成傅里叶级数。2 2在连续点处其中f(t)a

3、02 n(an cosn1t bn s innt),anT片 f (t) cos n2tdt,(n 0,1,2,bnT2t f (t)sinn2tdt,(n 1,2,3,根据欧拉(Euler )公式:ej cossin ,(1)式化为假设令f(t)a02ejne jnanjbn2jnbnanjn tjn te ejbn2C。2jjn(1)(2)(3)(4)an jbn2T2t f (t)cosn2tdt1jTT2T2f (t) sinntdtT2r f (t)cos n2丄 b(t)ejntdt,T 2jsinn tdtn 1,2,3,Tn 1,2,3,f(t)ejn tdt,2综合c0,cn

4、,c n,可合并成一个式子0, 1, 2,(5)假设令 n nn 0, 1, 2,,那么(1)式可写为f(t) Co ©ej ntc ne j nt)n 1nnt(6)这就是傅里叶(Fourier)级数的指数形式。或写成f (t) 一 ; f ( )e j n d ej nt T n 2傅里叶积分定理(7)因为任何一个非周期函数f (t)都可以看成是由某个周期函数fT (t)当T时转化而来的,即fT (t) f (t)。于是有1T.tf(t)2rfT( )e jn d ejnt。T n2可以证明(详细过程可参阅文46),当T时,有1 . tf (t)f ( )e . d e. d ,公式(8)称为傅里叶积分公式。从而得到一个非周期函数可用傅里叶积分公式表示的傅里 叶积分定理。傅里叶变换根据傅里叶积分定理,设F( ) f(t)e . tdt,(8)(9)1 j tf(t) F( )eJ P ,(10)从上两式可以看出,f (t)和F()通过指定的积分运算可以相互表达。(9)式叫做f (t)的傅里叶变换,记为F( )

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论