




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、数学:寒假专题一一三角形中的常用辅助线2011-2-16 14:57:00 来源: 人气:68 讨论:0 条课程解读一、学习目标:归纳、掌握三角形中的常见辅助线二、重点、难点:1、全等三角形的常见辅助线的添加方法。2、掌握全等三角形的辅助线的添加方法并提高解决实际问题的能力。三、考点分析:全等三角形是初中数学中的重要内容之一,是今后学习其他知识的基础。判断三角形全等的公理有SAS ASA AAS SSS和HL,如果所给条件充足,则可直 接根据相应的公理证明,但是如果给出的条件不全,就需要根据已知的条件结 合相应的公理进行分析,先推导出所缺的条件然后再证明。一些较难的证明题 要构造合适的全等三角
2、形,把条件相对集中起来,再进行等量代换,就可以化 难为易了。典型例题人说几何很困难,难点就在辅助线。辅助线,如何添?把握定理和概念。还 要刻苦加钻研,找出规律凭经验。全等三角形辅助线找全等三角形的方法:(1)可以从结论出发,寻找要证明的相等的两条线段(或两个角)分别在 哪两个可能全等的三角形中;(2)可以从已知条件出发,看已知条件可以确定哪两个三角形全等;(3)可从条件和结论综合考虑,看它们能确定哪两个三角形全等;(4)若上述方法均不可行,可考虑添加辅助线,构造全等三角形。三角形中常见辅助线的作法: 延长中线构造全等三角形; 利用翻折,构造全等三角形; 引平行线构造全等三角形; 作连线构造等腰
3、三角形。常见辅助线的作法有以下几种:(1)遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题, 思维模式是全等变换中的“对折”。例1:如图, ABC是等腰直角三角形,/ BAC=90,BD平分/ ABC交AC于点D, CE垂直于BD,交BD的延长线于点E。求证:BD=2CE思路分析:1)题意分析:本题考查等腰三角形的三线合一定理的应用2) 解题思路:要求证BD=2CE可用加倍法,延长短边,又因为有BD平分 / ABC的条件,可以和等腰三角形的三线合一定理结合起来。解答过程:证明:延长 BA , CE交于点F,在 BEF和 BEC中,/ 仁/2,BE=BE,/ BEF= / BEC=90
4、, BEF A BEC, EF=EC,从而 CF=2CE。又/ 1 + Z F= / 3+Z F=90°,故/ 1= / 3。在 A ABD 和 A ACF 中,t/ 仁/3,AB=AC,/ BAD= / CAF=90 , A ABDB A ACF,. BD=CF, BD=2CE。解题后的思考:等腰三角形“三线合一”性质的逆命题在添加辅助线中的应 用不但可以提高解题的能力,而且还加强了相关知识点和不同知识领域的联系, 为同学们开拓了一个广阔的探索空间;并且在添加辅助线的过程中也蕴含着化 归的数学思想,它是解决问题的关键。(2)若遇到三角形的中线,可倍长中线,使延长线段与原中线长相等,
5、构 造全等三角形,利用的思维模式是全等变换中的“旋转”。例2:如图,已知 A ABC中,AD是/ BAC的平分线,AD又是BC边上的中线。求证: A ABC是等腰三角形。思路分析:1)题意分析:本题考查全等三角形常见辅助线的知识。2)解题思路:在证明三角形的问题中特别要注意题目中出现的中点、中线、中位线等条件,一般这些条件都是解题的突破口,本题给出了AD又是BC边上的中线这一条件,而且要求证AB=AC,可倍长AD得全等三角形,从而问题得证。解答过程:证明:延长 AD到E,使DE=AD,连接 BE。又因为 AD是BC边上的中线, BD=DC又/ BDE= / CDA BEM CAD, 故 EB=
6、AC,/ E= / 2, AD是/ BAC的平分线/ 仁/2,/ 仁/ E , AB=EB从而AB=AC即卩 ABC是等腰三角形。解题后的思考:题目中如果出现了三角形的中线,常加倍延长此线段,再将端点连结,便可得到全等三角形。(3) 遇到角平分线,可以自角平分线上的某一点向角的两边作垂线,利用 的思维模式是三角形全等变换中的“对折”,所考知识点常常是角平分线的性 质定理或逆定理。例 3:已知,如图,AC平分/ BAD CD=CB AB>AD 求证:/ B+Z ADC=180。思路分析:1) 题意分析:本题考查角平分线定理的应用。2) 解题思路:因为AC是Z BAD的平分线,所以可过点 C
7、作Z BAD的两边的 垂线,构造直角三角形,通过证明三角形全等解决问题。解答过程:证明:作CE!AB于E,CF丄AD于 F。 AC平分Z BAD CE=CF在 Rt CBE和 Rt CDF中,vCE=CF CB=CD Rt CB專 Rt CDF/ B=Z CDFvZ CDFV ADC=180 ,/ B+Z ADC=180。解题后的思考:(4) 过图形上某一点作特定的平行线,构造全等三角形,利用的思维模式 是全等变换中的“平移”或“翻转折叠”例4:如图, ABC中,AB=AC E是AB上一点,F是AC延长线上一点,连 EF 交BC于D,若EB=CF求证:DE=DF思路分析:1) 题意分析:本题考
8、查全等三角形常见辅助线的知识:作平行线。2) 解题思路:因为DE、DF所在的两个三角形 DEB与 DFC不可能全等,又知EB=CF, 所以需通过添加辅助线进行相等线段的等量代换:过E作EG/CF,构造中心对称型全等三 角形,再利用等腰三角形的性质,使问题得以解决。解答过程:证明:过E作EG/AC交BC于G, 则/ EGBH ACB又 AB=ACZ B=Z ACB/ B=Z EGB / EGDH DCF EB=EG=CFvZ EDBM CDF DGE A DCF DE=DF解题后的思考:此题的辅助线还可以有以下几种作法:例 5: ABC中 , Z BAC=60 , Z C=40° ,
9、AP平分Z BAC交 BC于 P , BQ平分Z ABC交 AC于 Q 求证:AB+BP=BQ+AQ思路分析:1)题意分析:本题考查全等三角形常见辅助线的知识:作平行线。2)解题思路:本题要证明的是AB+BP=BQ+A彫势较为复杂,我们可以通过转化的思想把左式和右式分别转化为几条相等线段的和即可得证。可过0作BC的平行线。得 AD3A AQO得至U OD=OQAD=AQ只要再证出BD=O蹴可以 了。解答过程:图证明:如图(1),过O作OD/ BC交AB于D, Z ADOZ ABC=180 60° 40° =80° , 又 vZ AQOZ C+Z QBC=80 ,
10、Z ADOZ AQO又/ DAOM QAO OA=A, ADOA AQO-OD=OQ AD=AQ又: OD/ BP,/ PBOM DOB又/ PBOM DBO/ DBOM DOB BD=OD又/ BPAM C+Z PAC=70 ,/ BOPM OBAZ BAO=70 ,Z BOPM BPO BP=OB- AB+BP=AD+DB+BP=AQ+OQ+BO=AQ+BQ解题后的思考:(1) 本题也可以在AB上截取AD=AQ连OD构造全等三角形,即“截长法”(2) 本题利用“平行法”的解法也较多,举例如下:如图(2),过O作OD/ BC交AC于D,则厶ADOA ABC从而得以解决图(2)如图(3),过0
11、作DMEU交于D,奁AC:于耳 则AADOSflAAQO, abmAae 0从而得以解抉.如图 ,过F作PDZ/BQ交AB的延长线于D. PIJAAPDAAFCK而 得说解抉口;询如图(5),过P作PD/ BQ交AC于D,则厶ABPA ADP从而得以解决龙BpC图小结:通过一题的多种辅助线添加方法, 体会添加辅助线的目的在于构造全 等三角形。而不同的添加方法实际是从不同途径来实现线段的转移的,体会构 造的全等三角形在转移线段中的作用。从变换的观点可以看到,不论是作平行 线还是倍长中线,实质都是对三角形作了一个以中点为旋转中心的旋转变换构 造了全等三角形。(5)截长法与补短法,具体作法是在某条线
12、段上截取一条线段与特定线段 相等,或是将某条线段延长,使之与特定线段相等,再利用三角形全等的有关 性质加以说明。这种作法,适合于证明线段的和、差、倍、分等类的题目。例 6:如图甲,AD/ BC 点 E在线段 AB上,/ ADE=/CDE / DC=Z ECB 求证:CDADfBC思路分析:1)题意分析: 本题考查全等三角形常见辅助线的知识:截长法或补短法。2)解题思路:结论是CD=AC+BC,可考虑用“截长补短法”中的“截长”, 即在CD上截取CF=CB只要再证DF=DA即可,这就转化为证明两线段相等的问 题,从而达到简化问题的目的。解答过程:证明:在CD上截取CF=BC如图乙在 Ft迟与厅G
13、E中.CF = CBCE = CE:. FCEA BCE(SAS ,/ 2=Z 1。又 AD/ BC/ AD(+Z BCD:180°,:丄 DC&Z CD=90°,/ 2+Z 3=90°,/ 1 + Z 4=90°,/Z 3=/ 4。在厶FDE与厶ADE中,FDE = ADE卫二加Z3-.Z.4* FDEAADE(ASA , DF=DACD=DF+CF,/. CD=ADfBC。解题后的思考:遇到求证一条线段等于另两条线段之和时, 一般方法是截长 法或补短法:截长:在长线段中截取一段等于另两条中的一条,然后证明剩下部分等于另 一条;补短:将一条短线
14、段延长,延长部分等于另一条短线段,然后证明新线段等 于长线段。1)对于证明有关线段和差的不等式,通常会联系到三角形中两线段之和大于第三边、之差 小于第三边,故可想办法将其放在一个三角形中证明。2)在利用三角形三边关系证明线段不等关系时,如直接证明不出来,可连 接两点或延长某边构成三角形,使结论中出现的线段在一个或几个三角形中, 再 运用三角形三边的不等关系证明。小结:二角形图中有角平分线,可向两边作垂线。也可将图对折看,对称以后关系现。 角平分线平行线,等腰三角形来添。角平分线加垂线,三线合一试试看。 线段垂直平分线,常向两端把线连。线段和差及倍半,延长缩短可试验。 线段和差不等式,移到同一三
15、角形。三角形中两中点,连接则成中位线。 三角形中有中线,延长中线等中线。预习导学下一讲我们就要进入八下的学习了,八下的第一章是分式。请同学们预习课本,并思考以下问题。1、分式的概念是什么?2、分式的乘除法的运算法则是什么?同步练习(答题时间:90分钟)这几道题一定要认真思考啊,都是要添加辅助线的,开动脑筋好好想一想吧!加油!你一 定行!1、已知,如图1,在四边形ABCD中,BdAB, AD=DC BD平分/ ABC 求证:/ BAI+Z BCI=180°。2、已知,如图2,Z仁Z 2,P为BN上一点,且PDL BC于点D,ABfBC=2BD 求证:Z BAF+Z BCf=180
16、76;o图23、已知,如图 3,在厶 ABC中, Z C= 2Z B,Z 1 = Z 2。求证:AB=A(+CD久 如图5, AD为AABC的中线,求证孑AB+血C>2AD图56、如图6所示,AD是2XABC的中线,BE交于E,交AD于F,且AE=EF 求证 AC=BFO图6角你热愛生命吗?艮眩别浪费时间,因为时I、目是组成生W命的材料 言兰克林试题答案1、分析:因为平角等于180°,因而应考虑把两个不在一起的角通过全等转 化成为平角,图中缺少全等的三角形,因而解题的关键在于构造直角三角形, 可通过“截长法或补短法”来实现。证明:过点D作DE垂直BA的延长线于点E,作DF丄BC
17、于点F,如图1-2E T'/hzzF 分乙jet A cz)M ,DE = DFADCD:.Rt AD匡Rt CDFHL),/ DAE:/DCF又/ BADV DAE:180°,/./ BAD/DCF=180°, 即/ BAD/BCD:180°2、分析:与1相类似,证两个角的和是180°,可把它们移到一起,让它们 成为邻补角,即证明/ BC:/EAP因而此题适用“补短”进行全等三角形的构 造。证明:过点P作PE垂直BA的延长线于点E,如图2-2S 2-2丁丄丄乳且切丄占:PE=PD,在砒氐EFE与代沖-PEPDBPBP二舟底RPE当&理E
18、PD(RI4 EEWD.'剧阱EO2FD.'.ASLEKBIXBS,.'ADC=BDC=£-A b=AE.在阳貝PE吕&厶厂中,PB= PD斗 PEA= ZPDCAE= DC:.Rt APE Rt CPDSAS),/ PAE:/PCD又/ BAP/ PAE:180°。/ BAF+/ BCP=180°AC3、分析:从结论分析,“截长”或“补短”都可实现问题的转化,即延长 至E使CE=CD或在AB上截取AF=AG证明:方法一(补短法)延长 AC到 E,使 DC=CE,则/ CDEZ CED 如图 3-2ACB=2E,Z5= H在卫宜均月
19、ED中,Z1 = Z2=EAD= AD从EDMAED (JIA幻, .AB=AE.5LAE=A g dE=AC+DCt /.AEAC+DC.方袪二(载长法)在几5上截取J1声如图3J图3>3在厶AFTACD中,*AF 二 AC<Z1 = Z2A.D ADL AFDAACD(SAS , DF=DCZ AFD=Z ACD又/ AC* 2/ B,/ FDB=Z B, FD=FB AB=AF+FB=AC+FD AB=AC+C>D4、证明:(方法一)将DE两边延长分别交 AB AC于M N,在AMN中, AM+AN>MD+DE+NE在 BDM中, MB+MD>BD在厶 CE
20、N中, CN+NE>CE由+得:AM+AN+MB+MD+CN+NE>MD+DE+NE+BD+CE AB+AC>BD+DE+EC(方法二:图4-2)延长BD交AC于F,延长CE交BF于G 在厶ABF GFCffiA GD冲有: AB+AF>BD+DG+GFGF+FC>GE+CEDG+GE>DE由+得:AB+AF+GF+FC+DG+GE>BD+DG+GF+GE+CE+DE- AB+AC>BD+DE+EC5、分析:要证 AB+AC>2AD由图想到:AB+BD>ADAC+CD>AD所以有 AB+AC+BD+CD>AD+AD=2左边
21、比要证结论多BD+C D故不能直接证出此题,而 由2AD想到要构造2AD,即加倍中线,把所要证的线段转移到同一个三角形中去证明2証扶AD至匸l®DE.=AD,连捲EE, CE丁AD为郃C的中线(已知)BD=CD (中线定义)SAACD 和 4EBD 中BD = CD Q 已证) 4 = Z2C对顶角相等AD = ED C辅助线作法S ACDA EBD(SAS BE=CA(全等三角形对应边相等在 ABE中有:AB+BE>AE三角形两边之和大于第三边) AB+AC>2AD6、分析:欲证AC=BF只需证AC BF所在两个三角形全等,显然图中没有含 有AC BF的两个全等三角形,而根据题目条件去构造两个含有AC BF的全等三角形也并不容易。这时我们想到在同一个三角形中等角对等
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 高中文言文教学现状与《先秦诸子选读》教材教学研究问卷调查
- 疱疹性咽峡炎的临床护理
- 脑外伤关系护理要点
- 急性早幼粒细胞白血病的临床护理
- 邮储银行ai面试题目及答案
- 应届生校招:国企会计岗位面试题目及答案
- 银行招考法律试题及答案
- 医院护工面试题库及答案
- 专业育婴师培训及实习协议
- 婚姻忠诚度保障与重大疾病保险合同
- 北京中考英语词汇表(1600词汇)
- (完整版)重大危险源清单及辨识表
- 超市消防监控系统设计
- 新工科的建设和发展思考ppt培训课件
- 封样管理规定
- 黄腐酸钾项目可行性研究报告-用于立项备案
- 管理人员责任追究制度
- 自动旋转门PLC控制
- 电影场记表(双机位)
- 毕设高密电法探测及数据处理解释
- 【课件】第2课如何鉴赏美术作品课件-高中美术人教版(2019)美术鉴赏
评论
0/150
提交评论