第2章 4 二项分布_第1页
第2章 4 二项分布_第2页
第2章 4 二项分布_第3页
第2章 4 二项分布_第4页
第2章 4 二项分布_第5页
已阅读5页,还剩5页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、.§4二项分布1掌握独立重复试验的概念及意义,理解事件在n次独立重复试验中恰好发生k次的概率公式重点2理解n次独立重复试验的模型,并能用于解一些简单的实际问题难点3理解二项分布与超几何分布的关系易混点根底·初探教材整理二项分布阅读教材P48P50,完成以下问题1n次独立重复试验进展n次试验,假如满足以下条件:1每次试验只有两个互相_的结果,可以分别称为“_和“_;2每次试验“成功的概率均为p,“失败的概率均为;3各次试验是互相独立的,那么这n次试验称为n次独立重复试验【答案】1对立成功失败21p2二项分布1假设用随机变量X表示n次独立重复试验的次数,那么PXk_k0,1,2

2、,n2假设一个随机变量X的分布列如1所述,那么称X服从参数为n,p的二项分布,简记为X_.【答案】1Cpk1pnk2Bn,p1独立重复试验满足的条件是_填序号每次试验之间是互相独立的;每次试验只有发生和不发生两种情况;每次试验中发生的时机是均等的;每次试验发生的事件是互斥的【解析】由n次独立重复试验的定义知正确【答案】2一枚硬币连掷三次,只有一次出现正面的概率为_【解析】抛掷一枚硬币出现正面的概率为,由于每次试验的结果不受影响,故由独立重复试验可知,所求概率为PC2.【答案】质疑·手记预习完成后,请将你的疑问记录,并与“小伙伴们讨论交流:疑问1:解惑:疑问2:解惑:疑问3:解惑:小组

3、合作型独立重复试验中的概率问题某气象站天气预报的准确率为80%,计算结果保存到小数点后面第2位:15次预报中恰有2次准确的概率;25次预报中至少有2次准确的概率;35次预报中恰有2次准确,且其中第3次预报准确的概率【精彩点拨】由于5次预报是互相独立的,且结果只有两种即准确或不准确,符合独立重复试验【自主解答】1记预报一次准确为事件A,那么PA0.8.5次预报相当于5次独立重复试验,2次准确的概率为PC×0.82×0.230.051 20.05,因此5次预报中恰有2次准确的概率约为0.05.2“5次预报中至少有2次准确的对立事件为“5次预报全部不准确或只有1次准确,其概率为P

4、C×0.25C×0.8×0.240.006 720.01.所以所求概率为1P10.010.99.所以5次预报中至少有2次准确的概率约为0.99.3说明第1,2,4,5次中恰有1次准确所以概率为PC×0.8×0.23×0.80.02 0480.02,所以恰有2次准确,且其中第3次预报准确的概率约为0.02.独立重复试验概率求法的三个步骤1判断:根据n次独立重复试验的特征,判断所给试验是否为独立重复试验2分拆:判断所求事件是否需要分拆3计算:就每个事件根据n次独立重复试验的概率公式求解,最后利用互斥事件概率加法公式计算再练一题11甲、乙两

5、队进展排球比赛,在一局比赛中甲队胜的概率为,没有平局假设进展三局两胜制比赛,先胜两局者为胜,甲获胜的概率为_2在4次独立重复试验中,事件A至少发生1次的概率为,那么事件A在1次试验中出现的概率为_【解析】1“甲获胜分两类:甲连胜两局;前两局中甲胜一局,并胜最后一局即P2C×××.2由题意知,Cp01p41,p.【答案】12二项分布一名学生每天骑自行车上学,从家到学校的途中有5个交通岗,假设他在各交通岗遇到红灯的事件是互相独立的,并且概率都是.1求这名学生在途中遇到红灯的次数的分布列;2求这名学生在首次遇到红灯或到达目的地停车前经过的路口数的分布列【精彩点拨】1首先

6、判断是否服从二项分布,再求分布列2注意“首次遇到“或到达的含义,并明确的取值再求取各值的概率【自主解答】1B,的分布列为PkCk5k,k0,1,2,3,4,5.2的分布列为PkP前k个是绿灯,第k1个是红灯k·,k0,1,2,3,4;P5P5个均为绿灯5.故的分布列为012345P1本例属于二项分布,当X服从二项分布时,应弄清XBn,p中的试验次数n与成功概率p.2解决二项分布问题的两个关注点1对于公式PXkCpk1pnkk0,1,2,n必须在满足“独立重复试验时才能运用,否那么不能应用该公式2判断一个随机变量是否服从二项分布,关键有两点:一是对立性,即一次试验中,事件发生与否两者必

7、有其一;二是重复性,即试验是独立重复地进展了n次再练一题2在一次数学考试中,第14题和第15题为选做题规定每位考生必须且只需在其中选做一题设4名考生选做每道题的可能性均为,且各人的选择互相之间没有影响1求其中甲、乙2名考生选做同一道题的概率;2设这4名考生中选做第15题的人数为名,求的分布列【解】1设事件A表示“甲选做14题,事件B表示“乙选做14题,那么甲、乙2名考生选做同一道题的事件为“AB,且事件A,B互相独立PABPAPBPP××.2随机变量的可能取值为0,1,2,3,4,且B.PkCk4kC4k0,1,2,3,4随机变量的分布列为01234P探究共研型独立重复试验

8、与二项分布综合应用探究1王明在做一道单项选择题时,从A,B,C,D四个选项中随机选一个答案,他做对的结果数服从二项分布吗?两点分布与二项分布有何关系?【提示】做一道题就是做一次试验,做对的次数可以为0次、1次,它服从二项分布两点分布就是一种特殊的二项分布,即是n1的二项分布探究2王明做5道单项选择题,每道题都随机选一个答案,那么他做对的道数服从二项分布吗?为什么?【提示】服从二项分布因为每道题都是随机选一个答案,结果只有两个:对与错,并且每道题做对的概率均相等,故做5道题可以看成“一道题重复做了5次,做对的道数就是5次试验中“做对这一事件发生的次数,故他做对的“道数服从二项分布探究3王明做5道

9、单项选择题,其中2道会做,其余3道均随机选一个答案,他做对的道数服从二项分布吗?如何判断一随机变量是否服从二项分布?【提示】不服从二项分布因为会做的两道题做对的概率与随机选取一个答案做对的概率不同,不符合二项分布的特点,判断一个随机变量是否服从二项分布关键是看它是否是n次独立重复试验,随机变量是否为在这n次独立重复试验中某事件发生的次数,满足这两点的随机变量才服从二项分布,否那么就不服从二项分布甲乙两队参加奥运知识竞赛,每队3人,每人答复一个问题,答对者为本队赢得一分,答错得零分假设甲队中每人答对的概率均为,乙队中3人答对的概率分别为,且各人答复正确与否互相之间没有影响用表示甲队的总得分1求随

10、机变量的分布列;2用A表示“甲、乙两个队总得分之和等于3这一事件,用B表示“甲队总得分大于乙队总得分这一事件,求PAB【精彩点拨】1由于甲队中每人答对的概率一样,且正确与否没有影响,所以服从二项分布,其中n3,p;2AB表示事件A、B同时发生,即甲、乙两队总得分之和为3且甲队总得分大于乙队总得分【自主解答】1由题意知,的可能取值为0,1,2,3,且p0C3,P1C2,P2C2,P3C3.所以的分布列为0123P2用C表示“甲得2分乙得1分这一事件,用D表示“甲得3分乙得0分这一事件,所以ABCD,且C,D互斥,又PCC2,PDC3,由互斥事件的概率公式得PABPCPD.对于概率问题的综合题,首

11、先,要准确地确定事件的性质,把问题化归为古典概型、互斥事件、独立事件、独立重复试验四类事件中的某一种;其次,要判断事件是AB还是AB,确定事件至少有一个发生,还是同时发生,分别运用相加或相乘事件公式,最后,选用相应的求古典概型、互斥事件、条件概率、独立事件、n次独立重复试验的概率公式求解.再练一题3为拉动经济增长,某市决定新建一批重点工程,分为根底设施工程、民生工程和产业建立工程三类,这三类工程所含工程的个数分别占总数的,.现有3名工人独立地从中任选一个工程参与建立1求他们选择的工程所属类别互不一样的概率;2记为3人中选择的工程属于根底设施工程或产业建立工程的人数,求的分布列【解】记第i名工人

12、选择的工程属于根底设施工程、民生工程和产业建立工程分别为事件Ai,Bi,Ci,i1,2,3.由题意知A1,A2,A3互相独立,B1,B2,B3互相独立,C1,C2,C3互相独立,Ai,Bj,Cki,j,k1,2,3且i,j,k互不一样互相独立,用PAi,PBj,PCk.1他们选择的工程所属类别互不一样的概率P3! PA1B2C36PA1PB2PC36×××.2法一:设3名工人中选择的工程属于民生工程的人数为,由,B,且3,所以P0P3C3,P1P2C2,P2P1C2,P3P0C3.故的分布列是0123p法二:记第i名工人选择的工程属于根底设施工程或产业建立工程分别

13、为事件Di,i1,2,3.由,D1,D2,D3互相独立,且PDiPAiCiPAiPCi,所以B,即PkCk3k,k0,1,2,3.故的分布列是0123p构建·体系1一袋中有5个白球,3个红球,现从袋中往外取球,每次任取一个记下颜色后放回,直到红球出现10次时停顿,设停顿时共取了X次球,那么PX12AC102BC102CC22DC102【解析】“X12表示第12次取到红球,且前11次有9次取到红球,2次取到白球,因此,PX12·C9×2C102.【答案】D2某电子管正品率为,次品率为,现对该批电子管进展测试,设第次首次测到正品,那么P3AC2×BC2

14、15;C.2× D.2×【解析】3表示第3次首次测到正品,而前两次都没有测到正品,故其概率是2×.【答案】C3某市公租房的房源位于A,B,C三个片区,设每位申请人只申请其中一个片区的房源,且申请其中任一个片区的房源是等可能的该市的4位申请人中恰有2人申请A片区房源的概率为_. 【导学号:62690039】【解析】每位申请人申请房源为一次试验,这是4次独立重复试验,设申请A片区房源记为A,那么PA,所以恰有2人申请A片区的概率为C·2·2.【答案】4设XB4,p,且PX2,那么一次试验成功的概率p等于_【解析】PX2Cp21p2,即p21p22·2,解得p或p.【答案】或5甲、乙两人各射击一次击中目的的概率分别是和,假设两人射击是否击中目的,互相之间没有影响,每次射击是否击中目的,互相之间也没有影响1求甲射击4次,至少1次未击中目的的概率;2

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论