大肠杆菌表达系统的研究进展综述_第1页
大肠杆菌表达系统的研究进展综述_第2页
大肠杆菌表达系统的研究进展综述_第3页
大肠杆菌表达系统的研究进展综述_第4页
大肠杆菌表达系统的研究进展综述_第5页
免费预览已结束,剩余1页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、基因工程制药综述班级:生技132姓名:学号:大肠杆菌表达系统的研究进展综述自上世纪70年代以来,大肠杆菌一直是基因工程中应用最为广泛的表达系统。尽管基因工程表达系统已经从大肠杆菌扩大到酵母、昆虫、植物及哺乳动物细胞,并且近年来出现了很多新型的真核表达系统,但是大肠杆菌仍然是基因表达的重要工具。尤其是进入后基因组时代以来,有关蛋白结构以及功能研究的开展,对基因表达的要求更高,这时大肠杆菌往往是表达的第一选择。文章综述了近年来有关大肠杆菌表达载体及宿主细胞的改造工作。1. 1表达载体1表达调控构建有效的表达载体是表达目的基因的基本要求,同时也是影响基因表达水平以及蛋白活性的重要因素。标准的大肠杆菌

2、表达载体的主要组成:启动子、操纵子、核糖体结合位点、翻译起始区、多克隆位点、终止子、复制起点以及抗性筛选因子等。理想的表达载体要求在转录和翻译水平上可以控制目的基因的表达,然而目的基因在宿主体内过分表达(选用较强的启动子等)会对宿主造成压力,引起相关的细胞应答反应,影响蛋白的活性等。基因组、RNA转录组、蛋白质组、代谢调控组等领域的研究成果给我们提供了大量关于基因表达调控的信息1。现已能从基因和细胞的整体水平来方便地选择合适的启动子或合理开发新的载体系统。譬如Lee等利用二维凝胶电泳法比较了重组载体和空载体被分别转入宿主细胞后蛋白组学的差异,发现两者都产生了大肠杆菌热休克蛋白并引起了cAMPC

3、RP调节蛋白的应答,其中重组子的影响更为强烈;另外,还发现外源基因的表达使宿主核糖体合成速率、翻译延长因子和折叠酶表达水平、细胞生长率下降,而使细胞呼吸活力上升2。目前应用的表达载体主要问题是表达过程中出现的全或无的情况,通常表达的培养物都是非纯种的细胞群,其中有一些细胞可以最大限度地被诱导,而另一些细胞在诱导后基因的表达被关闭。分离具有合适强度启动子及翻译速率的载体变种可以优化表达水平,说明启动子的选择对于基因的诱导表达非常重要。Deborahat提出在芯片上排列具有不同强度级别启动子的载体进行互补分析,可能有助于筛选最为适合的启动子3。开发非IPTG或阿拉伯糖诱导的载体也可以提高基因表达水

4、平,Qing等利用cspA基因的独特性开发了一系列冷休克表达载体pCold,使目的基因在低温下(15C)诱导表达,提高了产物的溶解性和稳定性4。1.2 融合表达载体除了表达载体的调控性,为了提高蛋白产物的活性以及简化下游纯化的操作等,往往在表达载体上插入其它辅助的基因序列与目的基因构成融合蛋白表达。融合信号肽(PelB、OmpA、MalE、PhoA等)表达可以使融合蛋白通过经典的Sec途径分泌到周质或胞外表达,有利于形成二硫键以及避免胞质蛋白酶的水解和N端甲硫氨酸的延伸。另外,最近开发的双精氨酸转运体系(Tat)可以有效分泌正确折叠的重组蛋白5。常见的纯化标签多根据亲和层析的配体来选择,如6H

5、is、GST、CAT、MBP等经过一步亲和纯化可以得到均一性较高的产物,但化学洗脱会对产物的活性产生一定的影响。Ca2瓶赖的钙调蛋白结合肽(CBP)和链球菌亲和素结合肽(SBP)作为纯化标签时,只需要在洗脱液中移去标签依赖的离子或小分子就能实现温和的特异性洗脱6,7。再者,应用一些非层析的纯化标签在纯化操作中非常经济实用,如热敏型的类弹性蛋白多肽(ELPs)可以使蛋白产物在溶解态和非溶解态之间转变后续应用逆转循环的纯化方法可以达到亲和纯化的回收率同。另外,在纯化标签与目的蛋白之间插入一些特殊的短肽,同时融合剪切酶可以在纯化操作中利用标签的自剪切直接得到产物蛋白。例如SrtAc酶所识别的短肽序列

6、GTEPL,在蛋白N端依次连接短肽、剪切酶、6His融合表达,亲和上柱后剪切酶发挥作用使N端带有Gly的目的蛋白从融合状态中释放出来阴。噬菌体展示库是表达抗体或其它蛋白库的重要克隆技术,与之相似将目的基因同适合的锚定序列融合可以使产物蛋白表达到大肠杆菌的表面。大肠杆菌展示所用的融合配体一般为细菌的膜蛋白或跨膜转运体,如PadL是大肠杆菌长链脂肪酸的一种外膜转运体蛋白,N端融合PadL表达胞内酶,以全细胞的形式催化反应表现出非常高的稳定性阿;Yang等利用恶臭假单胞菌Pseudomonasputida外膜酯酶EstA的转运结构域作为表达胞内3-内酰胺酶的锚定基序,结果表明蛋白展示在细胞膜外并没有

7、影响细胞的活力11。1.3 共表达载体很多真核基因表达的产物都必须以多聚复合体的形式组合才能表现出相应的活性,因此在表达这一类目的基因的时候常构建共表达载体,另外共表达的策略在辅助新生蛋白质的折叠和分泌中也很有意义。Dzinenu等针对表达异源二聚体构建了可以同pET载体共表达的载体pOKD,这种载体含有p15A复制起点,所以可以和大多数大肠杆菌表达载体共存于细胞中12。细菌释放素蛋白(BRP)属于细菌中的一类分泌蛋白,共表达目的蛋白与BRP可以促进产物直接释放到培养基中13。另外,共表达分子伴侣也是促进蛋白正确折叠的手段。目前对于分子伴侣构成的网络模式还处于探索阶段,研究发现大肠杆菌中常见的

8、分子伴侣GroEL、Hsp同系物DnaK并非细胞内所有蛋白折叠所必需的,只有同核糖体结合的触发因子协调作用才能促进蛋白的适当折叠阿。但是,合理选择个别的分子伴侣共表达可以避免产物在细胞内错误的折叠以及沉积。Marco等设计了共表达分子伴侣的3载体系统,其中两种载体分别携带不同的分子伴侣,另外一种载体携带目的基因,分子伴侣与目的基因被分别独立诱导14。Cpn60和Cpn10是从嗜冷菌中分离的一类分子伴侣,共表达后可以使大肠杆菌在4C低温下生长,有利于蛋白的正确折叠15。与分子伴侣类似,共表达DsbA或Dsbc等二硫键相关蛋白可以辅助形成正确的二硫键。1.4 双杂交系统融合表达和共表达的另一个应用

9、是利用双杂交系统研究蛋白质的相互作用。大肠杆菌双杂交系统也是有3种载体构成,诱饵蛋白融合表达载体、捕获蛋白融合表达载体和报告基因表达载体16。以AraC/LexA双杂交系统为例,诱饵载体的启动子选用IPTG诱导的pTrc,诱饵蛋白融合在转录激活因子ArcC的N端表达,带有卡那霉素的抗性基因;捕获载体的启动子选择非IPTG诱导的pTet,可以在去水四环素的诱导下转录,捕获蛋白融合在LuxA操纵子效应物LuxA的N端,带有氨芳青霉素的抗性基因;报告基因LacZ的启动子选用大肠杆菌的araBAD启动子,其活性依赖于上游的AraC操纵子,同时在启动子下游安置3个定向重复的LexA操纵子半位点,载体带有

10、大观霉素的抗性基因,另外在AraC上游插入4个串联的rrnB终止子,减小转录通读对报告基因活性的背景影响。此3载体共表达系统的特点是诱饵蛋白同捕获蛋白分别独立诱导,可以通过控制诱导物的浓度逐步放大杂交蛋白相互作用对报告基因表达的抑制效应。诱饵蛋白与捕获蛋白分别结合在上游和下游的2个操纵子上,如果二者可以发生杂交作用,则在报告基因的DNA链上形成突环,使AraC转录激活效应发生逆转,所以通过菌落的蓝白斑差异可以筛选出发生相互作用的蛋白质。1.5 Univector系统通常在构建重组子表达时需要依赖限制性内切酶和连接酶的作有,进行亚克隆,而利用同源重组开发的载体可以实现基因的一次性克隆。Unive

11、ctor表达系统(UPS)就是这方面较为成功的实例16。Univector系统由两类载体组成(图1):一种称为万能的进入载体pUN1,具有特殊的loxP重组序列,通过重组酶Cre可以方便地穿梭进入表达载体;另一种即表达载体pHOST,同样具有loxP序列,pHOST是由不同的启动子与融合标签组成的载体系列,便于高通量筛选蛋白产物。Univector系统的特点是平行独立克隆到多载体中,使之在不同的诱导条件下表达,大大提高了表达的成功率,尤其在蛋白组的研究中具有很大的应用潜力网。2宿主细胞在大肠杆菌细胞内表达目的基因的主要优势:一个是宿主的遗传背景比较清楚,易于控制基因的表达;另一个是大肠杆菌容易

12、培养,可以获得较高产量的目的蛋白。但是在商业应用中很多的蛋白产物是真核基因编码,并且具有高级的三、四级结构,要求翻译后加工为正确的折叠形式或者糖基化蛋白等。由于大肠杆菌细胞的分子环境和折叠机制等与真核细胞具有很大的差异,所以在应用大肠杆菌系统表达真核基因时有必要利用代谢工程或进化的方法改造细胞,解决大肠杆菌表达系统的局限性,提高产物的活性。2. 1代谢工程载体携带目的基因进入宿主表达会给宿主本身造成代谢上的负担,影响细胞的生长速率等,推测可能是因为宿主不能提供足够外源基因表达所需的原料及能量。减轻表达对于宿主的压力可以通过控制质粒的拷贝数或者改变载体的抗性基因,还可以将目的基因直接插入染色体中

13、表达。Flores等则是将磷酸戊糖途径的代谢关键酶一6磷酸葡萄糖脱氢酶的基因克隆到多拷贝质粒中,转化大肠杆菌使细胞的生长速率在诱导后得到恢复17。除了利用大肠杆菌的代谢机制改进表达系统,另外还可以人为地在大肠杆菌中设计代谢途径,例如Masip等设计的二硫键合成途径。在大肠杆菌中催化二硫键形成的是周质蛋白DsbA,此蛋白通过膜蛋白DsbB得到循环利用。Masip等选择硫氧化还原蛋白TrxA作为二硫键的供体,使之在氧化态的胞质内形成二硫键,通过融合Tat特异性前导肽从细胞质转运到周质使重组蛋白在周质获得二硫键。因此这一途径不依赖DsbADsbS体系,仅通过胞内的硫氧化还原蛋白就能形成二硫键,所以可

14、以修复缺失DsbADsbB体系的宿主18。2. 2定向进化通常重组蛋白对于细胞内的蛋白酶都很敏感,为了避免蛋白酶的作用除了分泌表达外还可以对相关的蛋白酶进行突变,例如筛选缺乏ATP依赖的胞内蛋白酶的菌株,但是对于是否细胞因此而上调其它的蛋白酶浓度还不清楚。另外在周质中的蛋白酶也会降解产物蛋白,DegP蛋白是存在于细胞周质中的主要蛋白酶,所以可以应用degP失活的宿主表达蛋白。同时,C端为非极性的蛋白应该在prc突变的宿主中表达(Prc蛋白酶作用于C端非极性的蛋白),或者以N端融合形式表达19。前文已经提到过选择分子伴侣的问题,利用定向进化的方法分离分子伴侣或折叠因子的变异体,可以针对重组蛋白进

15、行高效的特异性折叠。Weissman等对大肠杆菌进行多轮的DNA改组和筛选,分离出的GroEL突变体提高了对绿色荧光蛋白的折叠效率20。另外,定向进化的方法还可以扩大大肠杆菌的遗传密码,在蛋白中添加非天然的氨基酸。决定氨酰tRNA合酶催化tRNA携带正确氨基酸的因素是不同于氨酰化位点的一个编辑位点。通过对染色体的随机诱变,筛选出一类突变体可以催化tRNAVal结合Ser,并且20%ffl胞内的Val都被类似于Ser的氨基丁酸取代21。Schultz等向大肠杆菌中引入一对特殊的tRNA/氨酰tRNA合酶,掺入对琥珀密码子应答的甲基化酪氨酸,在表达二氢叶酸还原酶的实验中发现,由于非天然氨基酸的存在

16、使基因翻译的保真度达到99需2。2.3蛋白质的糖基化很长时间以来,大肠杆菌被认为不能表达糖基化蛋白,因为原核细胞普遍缺乏糖基化功能。而在真核细胞中,大多数分泌蛋白都在翻译后加工过程中获得N端的寡糖链。寡糖(Glc3Man9GlcAc2)被类脂运载体转运到蛋白的N端,由寡糖转运酶催化寡糖与天冬酰氨或丝氨酸/苏氨酸残基形成N连接或O连接。空肠弯曲杆菌(Campylobacterjejuni)是目前发现的唯一具有类似真核糖基化代谢功能的原核生物,其基因组中的pgl基因簇编码的蛋白类似于真核细胞中的糖基转移酶。Wacker等将空肠弯曲杆菌的糖基化基因克隆到大肠杆菌中表达,结果pgl编码的蛋白PglB可

17、以指导质粒编码的AcrA蛋白的糖基化。通过对表达产物的分析发现,大肠杆菌与真核细胞表达的糖蛋白在寡糖链组成上没有相似性,但是同样与AsnXaaSer/Thr的氨基酸残基结合23。Schultz等将进化突变的方法应用于蛋白的翻译后加工中,结果获得了高产率的糖基化的肌红蛋白。他们从甲烷球菌中分离出酪氨酸tRNA合酶TyrRSs基因,在活性位点进彳T随机突变,经过几轮阳性和阴性筛选后得到对3-乙酰氨基葡萄糖-丝氨酸具有特异性的TyrRSs。这种氨酰tRNA合酶可以对琥珀密码子TAG应答催化形成tRNATyr3GlcNAc又;3GlcNAc的掺入为蛋白的糖基化提供了初级的糖基化位点,可以被糖基转运酶识

18、别进一步合成复杂的糖链。这种方法也可以应用于其它的翻译后加工中,包括蛋白的甲基化、磷酸化、乙酰化等24。基因的表达过程是一个复杂的过程,涉及基因的转录、翻译、翻译后加工、细胞的代谢以及细胞内基因与蛋白、蛋白与蛋白之间的相互作用。进入后基因时代之后,大肠杆菌首先被选作研究蛋白组学、基因功能、蛋白质网络等新课题的模型,揭示了很多基因表达的未知领域,同时提供了更多发展大肠杆菌表达系统的依据。伴随分子生物学新技术的涌现,大肠杆菌势必在实验研究及工业生产重组蛋白的应用中发挥出更大的作用。参考文献1 ReedJL,PalssonB.ThirteenYearsofBuildingConstraintBase

19、dInSilicoModelsofEscherichiacoliJ.JournalofBacteriology,2003,185(9):2692.2 LeePS,LeeKH.EscherichiaColiAModelSystemThatBenefitsFromandContributestotheEvolutionofProteomicsJ.BiotechnolBioeng,2003,84(7):801.3BertholdDA,StenmarkP,NordlundP.Screeningforfunctionalexpressionandoverexpressionofafamilyofdiir

20、oncontaininginterfacialmembraneproteinsusingtheunivectorrecombinationsystemJ.ProteinScience,2003,12:124.3 4QingG,MaL,KhorchidA,etal.ColdshockinducedhighyieldproteinproductioninEscherichiacoliJ.NatureBiotechnology,2004,22:877.4 ChoiJH,LeeSY.Secretoryandextracellularproductionofrecombinantproteinsusin

21、gEscherichiacoliJ.ApplMicrobiolBiotechnol,2004,64(5):625.5 EgorovMV,TigerstromA,PestovNB,etal.Purificationofarecombinantmembraneproteintaggedwithacalmodulinbindingdomain:propertiesofchimerasoftheEscherichiacolinicotinamidenucleotidetranshydrogenaseandtheCterminusofhumanplasmamembraneCa2+ATPaseJ.Prot

22、einExprPurif,2004,36:31.6 LamlaT,ErdmannVA.TheNanotag,astreptavidinbindingpeptideforthepurificationanddetectionofrecombinantproteinsJ.ProteinExprPurif,2004,33(1):39.7 TrabbicCarlsonK,LiuL,KimB,etal.ExpressionandpurificationofrecombinantproteinsfromEscherichiacoli:Comparisonofanelastinlikepolypeptide

23、fusionwithanoligohistidinefusionJ.ProteinSci,2004,13(12):3274.8 MaoH.AselfcleavablesortasefusionforonesteppurificationoffreerecombinantproteinsJ.ProteinExprPurif,2004,37:253.LeeSH,ChoiJ,ParkSJ,etal.DisplayofBacterialLipaseontheEscherichiacoliCellSurfacebyUsingFadLasanAnchoringMotifandUseoftheEnzymei

24、nEnantioselectiveBiocatalysisJ.AppliedandEnvironmentalMicrobiology,2004,70(9):5074.9 YangTH,PanJG,SeoYS,etal.UseofPseudomonasputidaEstAasanAnchoringMotifforDisplayofaPeriplasmicEnzymeontheSurfaceofEscherichiacoliJ.ApplEnvironMicrobiol,2004,70(12):6968.DzivenuOK,ParkHH,WuH.Generalcoexpressionvectorsf

25、ortheoverexpressionofheterodimericproteincomplexesinEscherichiacoliJ.ProteinExprPurif,2004,38(1):1.10 DeuerlingE,SchulzeSpechingA,TomoyasuT,etal.TriggerfactorandDnaKcooperateinfoldingofnewlysynthesizedproteinsJ.Nature,1999,400:693.11 MarcoA,MarcoVD.Bacteriacotransformedwithrecombinantproteinsandchap

26、eronesclonedinindependentplasmidsaresuitableforexpressiontuningJ.JBiotechnol,2004,109(12):45.12 FerrerM,ChernikovaTN,Timmis,etal.ExpressionofatemperaturesensitiveesteraseinanovelchaperonebasedEscherichiacolistrainJ.ApplEnvironMicrobiol,2004,70(8):4499.13 HuJC,KornackerMG,HochschildA.EscherichiacoliOne-andTwohybridsystemsfortheanalysisandidentificationofproteinproteininteractionJ.Methods,2000,20:80.14 FloresS,deAnda-HerreraR,GossetG,etal.GrowthraterecoveryofEscherichiacoli

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论