




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、1.1.3 1.1.3 导数的几何意义导数的几何意义 1.曲线的切线曲线的切线y=f(x)PQMxyOxyPy=f(x)QMxyOxy 如图如图,曲线曲线C是函数是函数y=f(x)的图象的图象,P(x0,y0)是曲线是曲线C上的上的任意一点任意一点,Q(x0+x,y0+y)为为P邻近一点邻近一点,PQ为为C的割线的割线,PM/x轴轴,QM/y轴轴,为为PQ的的倾斜角倾斜角.tan,: xyyMQxMP则则.就就是是割割线线的的斜斜率率表表明明:xy PQoxyy=f(x)割割线线切线切线T 我们发现我们发现,当点当点Q沿着曲线无限接近点沿着曲线无限接近点P即即x0时时,割线割线PQ有一个极限位
2、置有一个极限位置PT.则我们把直线则我们把直线PT称为曲称为曲线在点线在点P处的处的切线切线. 设切线的倾斜角为设切线的倾斜角为,那么当那么当x0时时,割线割线PQ的的斜率斜率,称为曲线在点称为曲线在点P处的处的切线的斜率切线的斜率.即即:xxfxxfxykxx )()(limlimtan0000 切切线线 这个概念这个概念:提供了求曲线上某点切线的斜率的一提供了求曲线上某点切线的斜率的一种方法种方法;切线斜率的本质切线斜率的本质函数平均变化率的极限函数平均变化率的极限.4.导数的几何意义导数的几何意义 函数函数 y=f(x)在点在点x0处的导数的几何意义,就是曲处的导数的几何意义,就是曲线线
3、 y=f(x)在点在点P(x0 ,f(x0)处的切线的斜率处的切线的斜率. 故曲线故曲线y=f(x)在点在点P(x0 ,f(x0)处的切线方程是处的切线方程是:)()(000 xxxfxfy 即即:0()kfx切线例例1:求曲线求曲线y=f(x)=x2+1在点在点P(1,2)处的切线方程处的切线方程.QPy=x2+1xy-111OjMyx. 2)(2lim) 11 (1)1 (lim)()(lim:2020000 xxxxxxxfxxfkxxx解解因此因此,切线方程为切线方程为y-2=2(x-1),即即y=2x.求曲线在某点处的切线方程求曲线在某点处的切线方程的基本步骤的基本步骤:先利用切线斜
4、率先利用切线斜率的定义求出切线的斜率的定义求出切线的斜率,然后然后利用点斜式求切线方程利用点斜式求切线方程.例例1:设设f(x)为可导函数为可导函数,且满足条件且满足条件 , 求曲线求曲线y=f(x)在点在点(1,f(1)处的切线的斜率处的切线的斜率.12)1 () 1 (lim0 xxffx, 12)1()1(lim)(0 xxffxfx是是可可导导函函数数且且解解: , 21)1 () 1 ()1 (lim, 1)1 (1)1 () 1 (lim2100 xfxfxxffxx. 2) 1 ( f故所求的斜率为故所求的斜率为-2.例例2:如图如图,已知曲线已知曲线 ,求求: (1)点点P处的
5、切线的斜率处的切线的斜率; (2)点点P处的切线方程处的切线方程.)38, 2(313Pxy上上一一点点 yx-2-112-2-11234OP313yx.)(33lim31)()(33lim3131)(31limlim,31)1(2220322033003xxxxxxxxxxxxxxxxyyxyxxxx 解解:. 42|22 xy即即点点P处的切线的斜率等于处的切线的斜率等于4. (2)在点在点P处的切线方程是处的切线方程是y-8/3=4(x-2),即即12x-3y-16=0.例例2:设函数设函数f(x)在点在点x0处可导处可导,求下列各极限值求下列各极限值:.2)()(lim)2(;)()(
6、lim) 1(000000hhxfhxfxxfxxfhx 分析分析:利用函数利用函数f(x)在点在点x0处可导的条件处可导的条件,将题目中给定将题目中给定 的极限恒等变形为导数定义的形式的极限恒等变形为导数定义的形式.注意在导数定注意在导数定 义中义中,自变量的增量自变量的增量x的形式是多样的的形式是多样的,但不论但不论x 选择哪种形式选择哪种形式, y也必须选择与之相对应的形式也必须选择与之相对应的形式.);()()(lim)()()(lim)1(0000000 xfxxfxxfxxfxxfxx 原原式式解解:).( )( )( 21)()(lim)()(lim212)()()()(lim)
7、2(00000000000000 xfxfxfhxfhxfhxfhxfhxfhxfxfhxfhhh 原原式式例例3:证明证明:(1)可导的偶函数的导函数为奇函数可导的偶函数的导函数为奇函数; (2)可导的奇函数的导函数为偶函数可导的奇函数的导函数为偶函数.证证:(1)设偶函数设偶函数f(x),则有则有f(-x)=f(x).).()()(lim,)(0 xfxxfxxfxfyx 可可导导函函数数).()()(lim)()(lim)()(lim)(000 xfxxfxxfxxfxxfxxfxxfxfxxx .)(立立是是奇奇函函数数,从从而而命命题题成成xf (2)仿仿(1)可证命题成立可证命题成
8、立,在此略去在此略去,供同学们在课后练供同学们在课后练 习用习用.练习练习1:设函数设函数f(x)在点在点x0处可导处可导,求下列各极限值求下列各极限值:xxftxxfxxfxmxfxx )()(lim)2( ;)()(lim) 1 (000000).(1)2();()1(00 xftxfm 答答案案:练习练习2:设函数设函数f(x)在点在点x=a处可导处可导,试用试用a、f(a)和和.)()(lim)(axaxfxafafax 表表示示).()()()()(lim)()()()(lim)()(lim:afafaafaxafxfaaxafaxafxfaaxaxfxafaxaxax 解解6.小结
9、小结a.导数是从众多实际问题中抽象出来的具有相同的数导数是从众多实际问题中抽象出来的具有相同的数 学表达式的一个重要概念,要从它的几何意义和物学表达式的一个重要概念,要从它的几何意义和物 理意义了认识这一概念的实质,学会用事物在全过理意义了认识这一概念的实质,学会用事物在全过 程中的发展变化规律来确定它在某一时刻的状态。程中的发展变化规律来确定它在某一时刻的状态。 b.要切实掌握求导数的三个步骤:(要切实掌握求导数的三个步骤:(1)求函数的增)求函数的增 量;(量;(2)求平均变化率;()求平均变化率;(3)取极限,得导数。)取极限,得导数。c.弄清弄清“函数函数f(x)在点在点x0处的导数处
10、的导数”、“导函数导函数”、“导数导数” 之间的区别与联系。之间的区别与联系。(1)函数在一点处的导数,就是在该点的函数的改)函数在一点处的导数,就是在该点的函数的改 变量与自变量的改变量之比的极限,它是一个变量与自变量的改变量之比的极限,它是一个 常数,不是变数。常数,不是变数。(2)函数的导数,是指某一区间内任意点)函数的导数,是指某一区间内任意点x而言的而言的, 就是函数就是函数f(x)的导函数的导函数 。)(xf (3)如果函数)如果函数yf(x)在开区间在开区间(a,b)内每一点都可导内每一点都可导, 就说函数就说函数yf(x)在开区间在开区间(a,b)内可导,这时,内可导,这时,
11、对于开区间内每一个确定的值对于开区间内每一个确定的值x0,都对应着一,都对应着一 个确定的导数个确定的导数 ,这样就在开区间,这样就在开区间(a,b)内内 可构成一个新的函数,称作可构成一个新的函数,称作f(x)的导函数。的导函数。 )(0 xf (4)函数)函数f(x)在点在点x0处的导数处的导数 就是导函数就是导函数 在在x=x0处的函数值,即处的函数值,即 。这也是。这也是 求函数在点求函数在点x0处的导数的方法之一。处的导数的方法之一。 )(0 xf )(xf 0| )()(0 xxxfxf d.函数函数f(x)在点在点x0处有导数,则在该点处函数处有导数,则在该点处函数f(x)的曲的曲 线必有切线,且导数值是该切线的斜率;但函数线必有切线,且导数值是该切线的斜率;但函数f(x) 的曲线在点的曲线在点x0处有切线,而函数处有切线,而函数f(x)在该点处不一定在该点处不一定 可导。如函数可导。如函数 在在x=0处有切线,但不可导。处有切线,但不可导。xxf )(e.求切线方程的步骤:求切线方程的步骤:(1)求出函数在点)求出函数在点x0处的变化率处的变化率 ,得到曲线,得到曲线 在点在点(x0,f(x0
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 先进工业设备融资租赁与生产线智能化升级合同
- 智能港口集装箱无人集卡租赁与智能化运输管理协议
- 绿色建筑补贴资金审计与合规合同
- 股票账户资产分配与新材料研发投资合作协议
- 旅行社与景区联合打造国际旅游品牌合同
- 多学科生物实验动物伦理审查合作协议
- 环保型工业废气处理设施设计、施工及运营合同
- 硼硅玻璃管制瓶在疫苗生产环节的定制设计与生产合同
- 拼多多果园果品电商平台用户增长与留存策略合同
- DB42-T 2037.2-2023 梨形环棱螺养殖技术规程 第2部分:稻田养殖
- SL176-2007 水利水电工程施工质量检验与评定规程
- 咖啡品鉴大全
- 医用耗材配送服务方案
- 成品可靠性测试计划
- 反腐倡廉廉洁行医
- 2022年许昌职业技术学院教师招聘考试真题
- 医疗业务知识培训血透患者水分控制的管理健康宣教教学课件
- 高考作文答题卡(作文)
- 普通高校本科招生专业选考科目要求指引(通用版)
- GB/T 19582.1-2008基于Modbus协议的工业自动化网络规范第1部分:Modbus应用协议
- GB 16663-1996醇基液体燃料
评论
0/150
提交评论