离合器说明书1_第1页
离合器说明书1_第2页
离合器说明书1_第3页
离合器说明书1_第4页
离合器说明书1_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、沈阳理工大学应用技术学院离合器课程设计2离合器结构方案选取2.1 离合器车型的选定设计参数:发动机型号:DA462Q发动机最大转矩:51.5/3750【Nm/(r/min)】传动系传动比:1挡3.428、主减速比:5.142驱动轮类型与规格:4.50-12-8PR汽车总质量:1425(kg)使用工况:城乡离合器形式:单片3 离合器基本结构参数的确定3.1摩擦片主要参数的选择摩擦片外径是离合器的主要参数,它对离合器的轮廓尺寸、质量和使用寿命有决定性的影响。摩擦片外径D(mm)也可以根据发动机最大转矩(N.m)按如下经验公式选用 (3.1)式中,为直径系数,取值范围见表3-1。由选车型得=51.5

2、N·m,=14.6则将各参数值代入式后计算得 D=104.78mm根据离合器摩擦片的标准化,系列化原则,根据下表3-2表3-2 离合器摩擦片尺寸系列和参数(即GB145774)外径D/mm160180200225250280300325350内径d/mm110125140150155165175190195厚度h/3.23.53.53.53.53.53.53.54=d/D0.6870.6940.7000.6670.5890.5830.5850.5570.54010.6760.6670.6570.7030.7620.7960.8020.8000.827单位面积F/10613216022

3、1302402466546678可取:摩擦片相关标准尺寸: 外径D=160mm 内径d=110mm 厚度h=3.2mm 3.2离合器后备系数的确定结合设计实际情况,故选择=1.75。表3-3离合器后备系数的取值范围车 型后备系数乘用车及最大总质量小于6t的商用车1.201.75最大总质量为614t的商用车1.502.25挂车1.804.003.3单位压力P的确定前面已经初步确定了摩擦片的基本尺寸;外径D=160 内径d=110 厚度h=3.2 内径与外径比值C=0.687 1-C=0.676f=0.25由公式D ³fZP(1-c ³)=12得P=0.253Mpa3.4 摩擦

4、片基本参数的优化(1)摩擦片外径D(mm)的选取应使最大圆周速度不超过6570m/s,即m/sm/s 式中,为摩擦片最大圆周速度(m/s);为发动机最高转速(r/min)。(2)摩擦片的内、外径比应在0.530.70范围内,即(3)为了保证离合器可靠地传递发动机的转矩,并防止传动系过载,不同车型的值应在一定范围内,最大范围为1.24.0。(4)为了保证扭转减振器的安装,摩擦片内径d必须大于减振器振器弹簧位置直径约50mm,即mm (5)为反映离合器传递的转矩并保护过载的能力,单位摩擦面积传递的转矩应小于其许用值,即 (3.7)式中,为单位摩擦面积传递的转矩(N.m/mm2),可按表3.6选取经

5、检查,合格。表3.7单位摩擦面积传递转矩的许用值离合器规格028030035040 (6)为降低离合器滑磨时的热负荷,防止摩擦片损伤,对于不同车型,单位压力的最大范围为0.111.50MPa,即MPaMPaMPa(7)为了减少汽车起步过程中离合器的滑磨,防止摩擦片表面温度过高而发生烧伤,离合器每一次接合的单位摩擦面积滑磨功应小于其许用值,即 (3.8)J/mm2式中,为单位摩擦面积滑磨(J/mm2);对于最大总质量小于6.0t的商用车:J/mm2,对于最大总质量大于6.0t商用车:J/mm2:W为汽车起步时离合器接合一次所产生的总滑磨功(J),可根据下式计算 (3.9)式中,为汽车总质量(Kg

6、);为轮胎滚动半径(m);为汽车起步时所用变速器挡位的传动比;为主减速器传动比;为发动机转速r/min,计算时乘用车取r/min,商用车取r/min。其中: m Kg代入式(3.9)得J,代入式(3.8)得,合格。(8)离合器接合的温升式中,t为压盘温升,不超过°C;c为压盘的比热容,J/(Kg·°C);为传到压盘的热量所占的比例,对单片离合器压盘;,为压盘的质量Kg代入°C,合格。4 离合器从动盘设计4.1 从动盘设计从动盘总成应满足如下设计要求:(1)为了减少变速器换档时齿轮间的冲击,从动盘的转动惯量应尽可能小(2)为了保证汽车平稳起步、摩擦面片上的

7、压力分布均匀等从动盘应具有轴向弹性(3)为了避免传动系的扭转共振以及缓和冲击载荷,从动盘中应装有扭转减 振器(4)要有足够的抗爆裂强度4.1.1 从动片的选择和设计 在本设计中,采用分开式弹性从动片,离合器从动片采用1厚的的薄钢板冲压而成,其外径由摩擦面外径决定,在这里取250,内径由从动盘毂的尺寸决定,这将在以后的设计中取得。为了防止由于工作温度升高后使从动盘产生翘曲而引起离合器分离不彻底的缺陷,还在从动刚片上沿径向开有几条切口。4.1.2 从动盘毂的设计从动盘毂是离合器中承受载荷最大的零件,它几乎承受发动机传来的全部转矩。它一般采用齿侧对的矩形花键安装在变速器的第一轴上,花键的尺寸可根据摩

8、擦片的外径D与发动机的最大转矩Temax按国标GB114474选取。从动盘的轴向长度不宜过小,以免在花键轴上滑动时产生偏斜而使分离不彻底,一般取1.0-1.4倍的花键轴直径。从动盘毂一般采用锻钢(如35、45、40Cr等),并经调质处理。为提高花键内孔表面硬度和耐磨性,可采用镀铬工艺:对减振弹簧窗口及从动片配合,应进行高频处理。花键选取后应进行挤压应力j(MPa)及剪切应力j(MPa)的强度校核: (4.1) (4.2)式中,z为从动盘毂的数目;其余参数见表(4-1)。表4-1 离合器从动盘毂花键尺寸系列摩擦片外径D/mm发动机的最大转矩Temax/N·m花键尺寸挤压应力j/Mpa齿

9、数N外径D/mm内径d/mm齿厚b/mm有效齿长l/mm22515010322643011.525020010352843510.428028010353244012.7根据摩擦片的外径D=250mm与发动机的最大转矩Temax=181.3 N·m,由表4-1查得n=10,D=35mm,d=28mm,b=4mm,l=35mm,j=10.2Mpa,则由公式校核得:j=9.4MPa<j=10.2MPa。j=8.22 MPa < j=15MPa。所以,所选花键尺寸能满足使用要求4.1.3摩檫片的材料选取及与从动片的固紧方式在该设计中选取的是无石棉有机的摩擦材料。固紧摩擦片的方法

10、采用较软的黄铜铆钉直接铆接,采用这种方法后,当在高温条件下工作时,黄铜铆接有较高的强度,同时,当钉头直接与主动盘表面接触时,黄铜铆钉不致像铝铆钉那样会加剧主动盘工作表面的局部磨损,磨损后的生成物附在工作表面上对摩擦系数的影响也较小。这种铆接法还有固紧可靠和磨损后换装摩擦片方便等优点。5 离合器压盘设计5.1压盘的传力方式的选择本设计采用采用传动片式的传力方式。由弹簧钢带制成的传动片一端铆在离合器盖上,另一端用螺钉固定在压盘上,为了改善传动片的受力情况,它一般都是沿圆周布置。5.2压盘的几何尺寸的确定由于摩擦片的的尺寸在前面已经确定,故压盘的内外径也可因此而确定。压盘外径D=255 压盘内径d=

11、155压盘的厚度确定主要依据以下两点:(1)压盘应有足够的质量(2)压盘应具有较大的刚度在该设计中,初步确定该离合器的压盘的厚度为215.3压盘传动片的材料选择压盘形状需要耐磨,传热性好和具有较高的摩擦系数,故通常用灰铸铁铸造而成,其金相组织呈珠光体结构,硬度为HB170227,其摩擦表面的光洁度不低与1.6。为了增加机械强度,还可以另外添加少量合金元素。在本设计中用材料为3号灰铸铁JS1,工作表面光洁度取为1.6。5.4离合器盖的设计在设计中应注意以下几个问题:(1)离合器的刚度离合器分离杠杆支承在离合器盖上,如果盖的刚度不够,即当离合器分离时,可能会使盖产生较大的变形,这样就会降低离合器操

12、纵机构的传动效率,严重时还可能造成离合器分离不彻底,引起摩擦片的早期磨损,还会造成变速器的换档困难。因此为了减轻重量和增加刚度,该离合器盖采用厚度约为4的低碳钢板(如08钢板)冲压成带加强筋和卷边的复杂形状。(2)离合器的通风散热为了加强离合器的冷却离合器盖必须开有许多通风窗口,通常在离合器压紧弹簧座处开有通风窗口。(3)离合器的对中问题离合器盖的对中方式有两种,一种是用止口对中,另有种是用定位销或定位螺栓对中,由于本设计选用的是传动片传动方式,因而离合器盖通过一外圆与飞轮上的内圆止口对中.5.5传力片的设计及强度校核初定离合器压盘传力片的设计参数:设3组传力片(i=3),每组3片(n=3),

13、传力片的几何尺寸为:宽度b=19mm;厚度h=1mm;传力片上两孔之间距离l=60mm;孔的直径d=5mm;传动片切向布置,圆周半径R=1442.5mm;传力片材料的弹性模量。(1) 计算传力片的有效长度:(2) 计算传力片的弯曲总刚度:(3) 根据上述分析,计算以下3种工况的最大驱动应力及传力片的最小分离力:彻底分离时, 按照设计要求,,由上述公式可知. 压盘和离合器盖组装成总成时,通过分析计算可知 计算最大应力 离合器传扭时,分正向驱动(发动机向车轮)和反向驱动(车轮向发动机),出现在离合器摩擦片磨损到极限状况时,通过尺寸链计算可知=5mm()正向驱动:()反向驱动: 可见反向驱动最危险,

14、由于在取计算载荷时比较保守,明显偏大,因此传力片的许用应力可取其屈服极限。故传力片材料选择80号钢。 传力片的最小分离力(弹性恢复力)发生在新装离合器的时候,从动盘尚未磨损,离合器在接合状态下的弹性弯曲变形量此时最小,根据设计图纸确定f=0.87mm 。传力片的弯曲总刚度,当f=0.87mm时,其弹性恢复力为认为合理。6离合器分离装置设计6.1分离杆的设计在设计分离杆时应注意以下几个问题:(1)分离杆要有足够的刚度(2)分离杆的铰接处应避免运动上的干涉(3)分离杆内端的高度可以调整6.2离合器分离套筒和分离轴承的设计现代汽车离合器中主要采用了角接触式的径向推力球轴承,并由轴承内圈转动。7 离合

15、器膜片弹簧设计7.1 膜片弹簧主要参数的选择7.1.1比较H/h的选择此值对膜片弹簧的弹性特性影响极大,分析式(3.10)中载荷与变形1之间的函数关系可知,当时,F2为增函数;时,F1有一极值,而该极值点又恰为拐点;时,F1有一极大值和极小值;当时,F1极小值在横坐标上,见图3.1。1- 2- 3-4- 5-图3.1 膜片弹簧的弹性特性曲线为保证离合器压紧力变化不大和操纵方便,汽车离合器用膜片弹簧的H/h通常在1.52范围内选取。常用的膜片弹簧板厚为24mm,本设计 ,h=3mm ,则H=6mm 。7.1.2 R/r选择通过分析表明,R/r越小,应力越高,弹簧越硬,弹性曲线受直径误差影响越大。

16、汽车离合器膜片弹簧根据结构布置和压紧力的要求,R/r常在1.21.3 的范围内取值。本设计中取,摩擦片的平均半径mm, 取mm则mm取整mm 则。7.1.3圆锥底角 汽车膜片弹簧在自由状态时,圆锥底角一般在°范围内,本设计中 得°在°之间,合格。分离指数常取为18,大尺寸膜片弹簧有取24的,对于小尺寸膜片弹簧,也有取12的,本设计所取分离指数为18。7.1.4切槽宽度mm,mm,取mm,mm,应满足的要求。7.1.5 压盘加载点半径和支承环加载点半径的确定应略大于且尽量接近r,应略小于R且尽量接近R。本设计取mm,mm。膜片弹簧应用优质高精度钢板制成,其碟簧部分的

17、尺寸精度要高。国内常用的碟簧材料的为60SizMnA,当量应力可取为16001700N/mm2。7.1.6 公差与精度离合器盖的膜片弹簧支承处,要具有大的刚度和高的尺寸精度,压力盘高度(从承压点到摩擦面的距离)公差要小,支承环和支承铆钉安装尺寸精度要高,耐磨性要好。7.2 膜片弹簧的优化设计(1)为了满足离合器使用性能的要求,弹簧的与初始锥角应在一定范围内,即(2)弹簧各部分有关尺寸的比值应符合一定的范围,即(3)为了使摩擦片上的压紧力分布比较均匀,推式膜片弹簧的压盘加载点半径(或拉式膜片弹簧的压盘加载点半径)应位于摩擦片的平均半径与外半径之间,即拉式: (4)根据弹簧结构布置要求,与,与之差

18、应在一定范围内选取,即(5)膜片弹簧的分离指起分离杠杆的作用,因此杠杆比应在一定范围内选取,即拉式: 由(4)和(5)得mm,mm。7.3膜片弹簧的载荷与变形关系碟形弹簧的形状如以锥型垫片,见图3.2,它具有独特的弹性特征,广泛应用于机械制造业中。膜片弹簧是具有特殊结构的碟形弹簧,在碟簧的小端伸出许多由径向槽隔开的挂状部分分离指。膜片弹簧的弹性特性与尺寸如其碟簧部分的碟形弹簧完全相同(当加载点相同时)。因此,碟形弹簧有关设计公式对膜片弹簧也适用。通过支承环和压盘加在膜片弹簧上的沿圆周分布的载荷,假象集中在支承点处,用F1表示,加载点间的相对变形(轴向)为1,则压紧力F1与变形1之间的关系式为:

19、 (3.10)式中: E弹性模量,对于钢, 泊松比,对于钢,=0.3 H膜片弹簧在自由状态时,其碟簧部分的内锥高度 h弹簧钢板厚度 R弹簧自由状态时碟簧部分的大端半径r弹簧自由状态时碟簧部分的小端半径R1压盘加载点半径r1支承环加载点半径图3.2膜片弹簧的尺寸简图代入(3.10)得 (3.11)对(3.11)式求一次导数,可解出1=F1的凹凸点,求二次导数可得拐点。凸点:mm时,N凹点:mm时,N拐点:mm时,N 2、当离合器分离时,膜片弹簧加载点发生变化。设分离轴承对膜片弹簧指所加的载荷为F2,对应此载荷作用点的变形为2。由 (3.12) (3.13)列出表3.8:表3.9膜片弹簧工作点的数

20、据2.967.195.108.8821.5715.5935152177277308617222401膜片弹簧工作点位置的选择。从膜片弹簧的弹性特性曲线图分析出,该曲线的拐点H对应着膜片弹簧压平位置,而。新离合器在接合状态时,膜片弹簧工作点B一般取在凸点M和拐点H之间,且靠近或在H点处,一般,以保证摩擦片在最大磨损限度范围内压紧力从F1B到F1A变化不大。当分离时,膜片弹簧工作点从B变到C ,为最大限度地减小踏板力,C点应尽量靠近N点。为了保证摩擦片磨损后仍能可靠的传递传矩,并考虑摩擦因数的下降,摩擦片磨损后弹簧工作压紧力应大于或等于新摩擦片时的压紧力,见图.7.4膜片弹簧的应力计算假定膜片弹簧

21、在承载过程中其子午断面刚性地绕此断面上的某中性点O转动(图3.4)。断面在O点沿圆周方向的切向应变为零,故该点的切向应力为零,O点以外的点均存在切向应变和切向应力。现选定坐标于子午断面,使坐标原点位于中性点O。令X轴平行于子午断面的上下边,其方向如上图所示,则断面上任意点的切向应力为: (3.14)图3.3 膜片弹簧工作点位置式中 碟簧部分子午断面的转角(从自由状态算起)碟簧部分子有状态时的圆锥底角e 碟簧部分子午断面内中性点的半径e=(R-r)/In(R/r) (3.15)为了分析断面中断向应力的分布规律,将(3.14)式写成Y与X轴的关系式: (3.16)图3.4 切向应力在子午断面的分布

22、由上式可知,当膜片弹簧变形位置一定时,一定的切向应力t在X-Y坐标系里呈线性分布。当时,因为的值很小,我们可以将看成,由上式可写成。此式表明,对于一定的零应力分布在中性点O而与X轴承角的直线上。从式(3.16)可以看出当时无论取任何值,都有。显然,零应力直线为K点与O点的连线,在零应力直线内侧为压应力区,外侧位拉应力区,等应力直线离应力直线越远,其应力越高。由此可知,碟簧部分内缘点B处切向压应力最大,A处切向拉应力最大,分析表明,B点的切向应力最大,计算膜片弹簧的应力只需校核B处应力就可以了,将B点的坐标X=(e-r)和Y=h/2 代入(3.17)式有: (3.17)令可以求出切向压应力达极大

23、值的转角由于: mm所以: ,N/mm2B点作为分离指根部的一点,在分离轴承推力F2作用下还受有弯曲应力: (3.18)式中 n分离指数目 n=18 br单个分离指的根部宽mm因此: N/mm2由于rB是与切向压应力tB垂直的拉应力,所以根据最大剪应力强度理论,B点的当量应力为:N/mm2N/mm2故膜片弹簧和当量应力不超出允许应力范围,所以用设数据合适。8 扭转减震器设计减震器极转矩 N·m 摩擦转矩 N·m预紧转矩 N·m极限转角 ° 扭转角刚度 N·m/rad 8.1减振弹簧的安装位置,结合mm,得取55mm,则。 8.2全部减振弹簧总的

24、工作负荷N8.3单个减振弹簧的工作负荷N式中Z为减振弹簧的个数,按表3.9选择:取Z=6表3.10减振弹簧个数的选取 摩擦片的外径D/mm225250250325325350350Z4668810108.4减振弹簧尺寸(1)选择材料,计算许用应力根据机械设计采用65Mn弹簧钢丝, 设弹簧丝直径mm,MPa,MPa。(2)选择旋绕比,计算曲度系数根据下表选择旋绕比表3.11旋绕比的荐用范围d/mmC确定旋绕比,曲度系数(3)强度计算mm,与原来的d接近,合格。中径 mm;外径 mm(4)极限转角°取 °,则mm(5)刚度计算弹簧刚度 mm其中,为最小工作力,弹簧的切变模量MPa,则弹簧的工作圈数取,总圈数为(6)弹簧的最小高度mm(7)减振弹簧的总变形量mm(8)减振弹簧的自由高度mm(9)减振弹簧预紧变形量mm(10)减振弹簧的安装高度mm结 论本次课程设计根据给出的设计要求和原始设计参数,以及拉式膜片弹簧离合器及其操纵机构的工作原理和使用要求,通过对其工作原理的阐述、结构方案的比较和选择、相关零件参数的计算,大致确定了离合器及其操纵机构的基本结构和主要尺寸以及制造相关零部件所用的材料。结构方面:根据设计要求,考虑到使用条件和其显著的优点,选用带扭转减振器的单片拉式膜片弹簧离

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论