版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、“8.2 消元二元一次方程组的解法”教学设计 一、内容和内容解析 内容 人教版义务教育课程标准实验教科书·数学七年级下册“8.2 消元二元一次方程组的解法”。 内容解析 现实生活中存在大量问题涉及多个未知数,其中许多问题中的数量关系是一次(也称线性)的,而方程组则是解决这些问题的有力工具. 学生在小学阶段已经学习了解简易方程,在七年级上学期系统学习了解一元一次方程。解二元一次方程组的教学是在前面学习的基础上对方程的进一步研究和学习“元增多”(一元二元),而到九年级将解决“次增高”(一次二次)。 本节教学的核心是“消
2、元”,从讨论解方程组的需要出发,引导学生从解决问题的基本策略的角度(转化思想:多元(新问题)一元(旧问题),实现问题的解决.这里的转化亦即消元化归思想,认知策略是逐步减少未知数的个数,以使方程组化归为一元方程,即先解出一个未知数,然后逐步解出其他未知数.这对学生的能力提升以及后续学习非常重要.在这种思想的指导下,结合学生对同一个问题的不同解方法对照,发现用代入的方法能够实现消元,不仅对消元思想的理解由抽象到具体,而且找出了解二元一次方程组的一种基本方法代入消元法. 教学重点 解决问题的一般思路:转化(化繁为简,化难为易,化新为旧);对消元化归思想的初步理解;用代入法解二元一
3、次方程组. 二、目标和目标解析 (1)经历由实际问题抽象为方程组的过程,让学生体会其中蕴含的符号化、模型化的思想,进一步了解建模思想. 数学思想方法是蕴含在数学知识中的,学生对思想方法的理解和掌握是循序渐进的.在一元一次方程应用的学习中,学生已经对建模思想有了初步的了解,通过本节的教学,学生能更进一步地理解和体会这一思想,为本章第3节“实际问题与二元一次方程组”的顺利学习及分析问题、解决问题能力的提高奠定基础. (2)通过对不同解题思路及方法的对照、比较,发现二元到一元的转化,理解消元思想的内涵. 数学教学承载着启迪学生智慧的重任,智慧的启迪源
4、自学生对问题的主动探究(如观察、注意、思维、想象、记忆等),继而使问题得以解决.这一目标旨在消除部分学生对消元化归思想的模糊认识,真正理解消元思想,使学生能透过现象看到本质,激活思维,学会思考. (3)经历二元到一元的转化过程,理解代入消元的本质;通过对代入法解二元一次方程组过程的提炼、归纳、整理,掌握这一方法的基本解题过程并会灵活应用. 对本节的教学不能仅停留在具体题目的具体解题过程上,而应不断加深学生对思想方法的领悟,让学生从思想方法的高度认识、理解所学内容。这样,我们和学生分享的才是能活学活用、能解决问题、真正意义上的知识,而非“死”知识. (4)让学生阅读
5、一次方程组的古今表示及解法,使学生了解一些有关数学史的知识,感受我国古代数学的光辉成就. 数学的应用不是数学价值的全部体现.因此,数学教学不仅要培养学生应用数学知识、方法解决问题的能力,更承担着培养学生良好数学素养的责任.这就要求我们的课堂教学在传播知识的同时传播文化. 三、教学问题诊断分析 数学思想方法是具体的数学知识的灵魂,数学思想方法对一个人的影响往往要大于具体的数学知识. 在本章教材中,实际问题情境贯穿全章,本节对方程组解法的讨论也是在解实际问题的过程中进行的,因此建模的数学思想(方程思想)在这里得以充分体现。尽管在教学中教师会有意识地进行渗透
6、、明确,但学生对这一思想的理解和体会也许并不会深刻.或许,他们依旧不会有意识地、主动地在这种数学思想指导下对问题进行分析,必将导致分析问题的盲目性,就会不可避免地走弯路. 用代入消元法解二元一次方程如果仅停留在模仿、生搬硬套的水平上的话,方法本身并不难,经过大量题组的机械训练,相信绝大部分学生都能掌握这个方法,但对学生思维的发展、学习能力的提高毫无益处.以后在其他的问题情境中遇到需要代入或消元的方法时,学生会感到茫然、束手无策. 因此,本节的教学难点是:对数学思想方法的理解,尤其是对用代入的方法实现消元的主动理解.突破这一难点的关键是给学生充足的思考、探索、交流的时间,让他
7、们的思维自然流淌,使消元“水到渠成”,从而“悟”出消元的必然. 四、教学过程设计 (一)情景导课 背景材料:老师在我们学校代三个班的数学,所教学生共143人.问题1:你能提出什么数学问题?如何解决?学生可能提出的问题:(1)每个班有多少个学生?(2)男生、女生各多少个? 针对问题(2),增加条件:男生人数的2倍比女生人数的3倍少14人.学生活动:解决问题;展示方法.教师点拨:(1)用建模思想引领思维,实际问题数学问题. (2)一元一次方程会解但难列,因为要综合考虑问题中的各种等量关系;二元一次方程组易列,因为可以分别考虑两个等量关系,但不会解。
8、从而产生了新问题。方程组对于解含多个未知数的问题很有效,它的优越性会随着问题中未知数的增加而体现得更加明显. 【设计意图】(1)由于是借班上课,以此形式开课既能创造轻松的氛围、拉近师生之间的距离,又可以巧妙引出本节课的教学内容.(2)问题是学生自己提出的,因此他们解决这个问题的积极性更高,思维更开阔,各种方法的出现便会成为必然.(3)让学生体会到方程组在解决实际问题中的优越性. (二) 解决问题 问题2:怎么解二元一次方程组呢?追问:为什么要这样做?依据是什么?你的解题思路是什么?你的解题方法的名称是什么?为什么可以这样归纳?(学生思考、交流.)教师明确:转化思想
9、新问题转化成旧问题;消元思想将未知数的个数由多化少,逐一解决.(学生展示自己的方法.)师生交流,达成共识,明确思路:变形代入求解写解。教师规范解题过程,进而形成概念: 代入消元法把二元一次方程组中的一个方程变形成用含一个未知数的式子表示另一个未知数的形式,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解.这种方法叫做代入消元法,简称代入法. 【设计意图】我们一直强调让学生“知其然,而且要知其所以然”.但学生往往停留在对知识或方法的表层理解的水平上,究其原因,还是没有形成较强的问题意识,不习惯于多问个“为什么是这样的”、“这样做的依据是什么”等问题.因此,教学应不失
10、时机地培养学生养成良好的问题意识.在问题的引导下,鼓励学生投入到活动中,并留给学生足够的独立思考和自主探索的时间和空间,从而让学生积极、主动地思考,随着思维的自然流淌,“顺势”自然地理解消元思想,解决问题的思路逐渐清晰. 通过探索实践,体验知识方法的形成过程,发现代入消元法的由来及过程,真正体会消元思想. 练习1 你能把下列方程写成用含x的式子表示y的形式吗?(1)3x+y-1=0;(2)2x-y=3;(3)2y-4x=7。 【设计意图】变形其实是解含字母系数的方程,是学生容易出错的地方,这个问题的设置是为代入法做准备. 练习2解方程组 【设计意图】这
11、一环节,可以让学生趁热打铁熟悉自己发现的方法。通过学生板书、学生批阅对错、教师规范,不仅可以让学生明确代入消元法解方程组的一般过程,再次规范解题的步骤. 总结:用代入法解二元一次方程组的一般步骤。 【设计意图】我们不应倡导学生对某一方法的死记硬背,但必要的归纳、提炼、反思,能让学生体会解方程组过程中的程序化思想,能帮助学生对基础知识和基本方法有清晰的认识,尤其是对学习学习基础较弱的学生. (三)巩固拓展 A组:必做题
12、60; B组:选做题【设计意图】理解了思路,明确了方法,还要通过一定量的练习才能切实掌握方法,融会贯通,领悟思路,启迪智慧,灵活应用. 另外,上课时可以请两名学生选择同一道题目进行板演,主要是对比代入的字母不同,简易程度也不同。同时应指出,在方程组中有未知数的系数为±1时,应用代入法求解起来很简便,如果不是,就比较麻烦,所以在“变形”这一步中,要注意观察,同时为后面的加减
13、法的学习做了伏笔。 (四)反思提高 这节课,我学到的知识方法、思想有: 这节课,让我颇受启发的是:.这节课,我的收获还有:.这节课,让我感到难理解是:. 【设计意图】我们的教学不仅仅是和学生分享知识和方法,更重要的是培养学生的学习习惯、提高他们的学习能力,而勤于总结、善于反思则是能力提高的快车道. (五)体味文化 学生把自己搜集到的关于我国古代解方程组的资料互相交流. 【设计意图】教学不仅要关注学生在数学知识和能力方面得到提高,还要关注数学文化的传承,使学生受到数学文化的熏陶. 五、目标检测设计 1.把下列方程写成用含一个未知数的式子表示另一个未知数的形式。(1)3x-y=4; (2)-2x+y+3=0; (3)2x+3y=4。2.解下列方程组。(1)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 康复医学科肢体残疾康复治疗方案
- 口腔护理术前宣教
- 肠梗阻症状及护理心得
- 体能训练的原理
- 慢性病风险评估
- 热水袋使用方法
- 桥梁造型设计毕设
- 购物卡协议书
- 换签劳动合同协议书
- 2025-2026学年安徽省黄山市五年级数学上册期中考试试卷及答案
- 《日常手语学习》课件
- 小学生微生物科普课件
- 青海省西宁市第十一中学2024-2025学年九年级上学期期中测试数学试卷(含简单答案)
- 100以内加减法列竖式练习题-1680题
- PRP注射治疗膝关节炎
- “互联网”在生活中的应用 课件 2024-2025学年电子工业出版社(2022)初中信息技术第一册
- 2024版管理咨询合同范本
- 火灾车辆鉴定评估讲解
- 弘扬伟大抗战精神纪念中国人民抗日战争胜利 铭记抗战历史
- 国开大学位英语考试样题
- 尘肺病工伤认定申请书范文
评论
0/150
提交评论