版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、11.5.1曲边梯形曲边梯形的面积的面积高二数学高二数学 选修选修2-2 第一章第一章 导数及其应用导数及其应用2一一,学习目标学习目标:1、掌握曲边梯形面积的求法、掌握曲边梯形面积的求法.2、深刻理解化曲为直的思想、深刻理解化曲为直的思想.3、初步认识定积分的概念、初步认识定积分的概念.二二,重点重点:1、曲边梯形的面积、曲边梯形的面积2、化曲为直的思想、化曲为直的思想3、定积分的概念、定积分的概念三三,难点难点:化曲为直的思想及定积分概念化曲为直的思想及定积分概念3这些图形的面积该怎样计算?引入:情境创设情境创设 金门大桥金门大桥 (美国)(美国)和曲线和曲线 所围成的所围成的图形称为曲边
2、梯形。图形称为曲边梯形。 曲边梯形的定义:曲边梯形的定义:由直线由直线 0),(,ybabxax)(xfy 概念形成概念形成 2xy 案例探究案例探究 1xyo如何求由直线如何求由直线 与抛物线与抛物线 所围成的平面图形的面积所围成的平面图形的面积 S?2xy 0, 1, 0yxx看看怎样求出下列图形的面积?从中你有何启示?思维导航不规则的几何图形可以分割成不规则的几何图形可以分割成若干个规则的几何图形来求解若干个规则的几何图形来求解魏晋时期的数学家刘徽的割圆术“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣”刘徽刘徽的这种研究方法对你有什么启示?思维导航-割圆术割圆术魏晋
3、时期的数学家刘徽的割圆术“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣”刘徽刘徽的这种研究方法对你有什么启示?思维导航-割圆术割圆术“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣”割圆术:刘徽在九章算术注中讲到刘徽刘徽的这种研究方法对你有什么启示?-割圆术割圆术思维导航 以“直”代“曲”无限逼近案例探究案例探究 2xy 1xyo如何求由直线如何求由直线 与抛物线与抛物线 所围成的平面图形的面积所围成的平面图形的面积 S?2xy 0, 1, 0yxx思考1:怎样“以直代曲”?能整体以“直”代“曲吗?思考2:怎样分割最简单?nininii, 2 , 1,
4、1 个区间为记第nninix11:长度y=x2xyO11 1、分割、分割这样这样0,10,1区间区间分成n个小区间: 1 ,1,2,1,1, 0nnnnn对应的小曲边梯形面积为SininSSSSS 211ininy=x2把底边把底边0,10,1分成分成n n等份等份, , 在每个分点作底边在每个分点作底边的垂线的垂线, ,1n2n1nn案例探究案例探究 2( )( )iifnn2( )( )iifnn2 2、近似代替(以直代曲)方案方案.方案方案.方案方案xyO11ininy=x2211()()iifnn方案方案.案例探究案例探究 思考3:对每个小曲边梯形如何“以直代曲”?怎样使各个结果更接近
5、真实值?深入思考观察以下演示,注意当分割加细时,观察以下演示,注意当分割加细时,矩形面积和与曲边梯形面积的关系。矩形面积和与曲边梯形面积的关系。观察以下演示,注意当分割加细时,观察以下演示,注意当分割加细时,矩形面积和与曲边梯形面积的关系。矩形面积和与曲边梯形面积的关系。观察以下演示,注意当分割加细时,观察以下演示,注意当分割加细时,矩形面积和与曲边梯形面积的关系。矩形面积和与曲边梯形面积的关系。观察以下演示,注意当分割加细时,观察以下演示,注意当分割加细时,矩形面积和与曲边梯形面积的关系。矩形面积和与曲边梯形面积的关系。观察以下演示,注意当分割加细时,观察以下演示,注意当分割加细时,矩形面积
6、和与曲边梯形面积的关系。矩形面积和与曲边梯形面积的关系。观察以下演示,注意当分割加细时,观察以下演示,注意当分割加细时,矩形面积和与曲边梯形面积的关系。矩形面积和与曲边梯形面积的关系。观察以下演示,注意当分割加细时,观察以下演示,注意当分割加细时,矩形面积和与曲边梯形面积的关系。矩形面积和与曲边梯形面积的关系。观察以下演示,注意当分割加细时,观察以下演示,注意当分割加细时,矩形面积和与曲边梯形面积的关系。矩形面积和与曲边梯形面积的关系。观察以下演示,注意当分割加细时,观察以下演示,注意当分割加细时,矩形面积和与曲边梯形面积的关系。矩形面积和与曲边梯形面积的关系。观察以下演示,注意当分割加细时,
7、观察以下演示,注意当分割加细时,矩形面积和与曲边梯形面积的关系。矩形面积和与曲边梯形面积的关系。观察以下演示,注意当分割加细时,观察以下演示,注意当分割加细时,矩形面积和与曲边梯形面积的关系。矩形面积和与曲边梯形面积的关系。观察以下演示,注意当分割加细时,观察以下演示,注意当分割加细时,矩形面积和与曲边梯形面积的关系。矩形面积和与曲边梯形面积的关系。观察以下演示,注意当分割加细时,观察以下演示,注意当分割加细时,矩形面积和与曲边梯形面积的关系。矩形面积和与曲边梯形面积的关系。观察以下演示,注意当分割加细时,观察以下演示,注意当分割加细时,矩形面积和与曲边梯形面积的关系。矩形面积和与曲边梯形面积
8、的关系。观察以下演示,注意当分割加细时,观察以下演示,注意当分割加细时,矩形面积和与曲边梯形面积的关系。矩形面积和与曲边梯形面积的关系。 通过动画演示我们可以看出,n越大,区间分的越细,各个结果就越接近真实值。为此,我们让n无限变大,这就是一个求极限的过程。深入思考(2 2)近似代替(以直代曲)n1)n1i(x)n1i(fS2i于是图中曲线之下小矩形面积依次为于是图中曲线之下小矩形面积依次为222211121110, (), (), ,(), nnnnnnnn(3)求和)求和n12nii 1nn2i 1i 12222222233SSSSSi-1 1i-11 f()()nnnn11121110(
9、)()()1012(n1) n1(1)(21)6nnnnnnnnn nnn 所有这些小矩形的面积的和为所有这些小矩形的面积的和为(4)取极限)取极限222233x0(n)11 1012(n1) (n1)n(2n1)nn 61111(1)(2)6nn3 当分割无限变细,即亦即时,分割分割以曲代直以曲代直求和求和取极限取极限11S33所以,即所求曲边三角形的面积为 。n000i 1i-1 11111= limlimf()= lim(1)(2)nn63nxxxSSnn (1)在分割时一定要等分吗?不等分影响结果吗? (2)在近似代替时用小区间内任一点处的函数值影响结果吗 ? (3)总结一般曲边梯形面
10、积的表达式?两个结论1.1.在分割时在分割时,不管采用等分与不等分不管采用等分与不等分,结果一样。结果一样。 2. 2. 在近似代替时,用小区间内任在近似代替时,用小区间内任 一点处的函数值一点处的函数值作为近似值,结果也是一样的。作为近似值,结果也是一样的。归纳概括归纳概括 一般曲边梯形的面积的表达式一般曲边梯形的面积的表达式 niinfnabS1lim分割近似代替求和取极限以上计算曲边三角形面积的过程可以用流程图表示:OyxOyxOyxOyx即时小结学以致用积。求抛物线部分的断面面,的方程为假设上半部分的抛物线,1 , 0 xx-1y2oxy1求一个具体曲边梯形的面积求一个具体曲边梯形的面积 一个案例一个案例 两种思想两种思想 方案一、方案二、方案三方案一、方案二、方案三 三个方案三个方案 分割、近似代替、求和、求极限
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 妊娠期合并肾脏疾病管理策略
- 材料结构分析试题及答案
- 妊娠不同时期阑尾炎的诊疗策略差异
- 头颈癌干细胞耐药的免疫逃逸策略-1
- 地图学考试及答案
- 库房考试试题及答案
- 2025年大学建筑设计(结构设计基础)试题及答案
- 2026年空气净化器维修(净化效率调试)试题及答案
- 2025年高职供应链管理(供应链管理基础)试题及答案
- 2025年高职绘画(油画创作)试题及答案
- 第14课 算法对生活的影响 课件 2025-2026学年六年级上册信息技术浙教版
- 食品检验检测技术专业介绍
- 2025年事业单位笔试-贵州-贵州财务(医疗招聘)历年参考题库含答案解析(5卷套题【单项选择100题】)
- 二年级数学上册100道口算题大全(每日一练共12份)
- 空压机精益设备管理制度
- 国家开放大学《公共政策概论》形考任务1-4答案
- 药品经营与管理专业职业生涯规划书1400字数
- 正循环成孔钻孔灌注桩施工方案
- 苍南分孙协议书
- 2025-2030中国电动警用摩托车和应急摩托车行业市场现状供需分析及投资评估规划分析研究报告
- 农机安全操作培训课件
评论
0/150
提交评论