版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、【精品文档】如有侵权,请联系网站删除,仅供学习与交流最简二次根式、分母有理化.精品文档.最简二次根式、同类二次根式、分母有理化最简二次根式概念(1)最简二次根式是指 。 (2)同类二次根式是指 。 作对例题1、2、3说明掌握了基础知识,作对例题1、2、3、4达到中等水平, 作对例题1、2、3、4、5达到高级水平 例题1、中最简二次根式是 。例题2、下列根式中,不是最简二次根式的是( )ABCD例题3、下列根式不是最简二次根式的是()A.B.C.D.例题4、下列各式中哪些是最简二次根式,哪些不是?为什么? (1) (2) (3) (4) (5) (6)例题5、把下列各式化为最简二次根式: (1)
2、 (2) (3)当堂练习 1、下列各组根式中,是可以合并的根式是( ) A、 B、 C、 D、2、在二次根式:; ; ;中,能与合并的二次根式是 。3、如果最简二次根式与能够合并为一个二次根式, 则a=_.4、若最简二次根式与是同类二次根式,求m、n的值5、求:(1);(2);6、若最简二次根式与是同类二次根式,则。7、若最简二次根式与是同类二次根式,则。8、实数a在数轴上的位置如图所示,化简: =_. 9、在平面直角坐标系中,点P(-,-1)到原点的距离是 。10、观察下列等式:=+1;=+;=+;,请用字母表示你所发现的规律: 。强化训练 1、下列各式不是最简二次根式的是( ) A. B.
3、 C. D. 2、已知,化简二次根式的正确结果为( ) A. B. C. D. 3、对于所有实数,下列等式总能成立的是( ) A. B. C. D. 4、对于二次根式,以下说法中不正确的是( )A. 它是一个非负数 B. 它是一个无理数C. 它是最简二次根式 D. 它的最小值为35、 若2a3,则= 6、 6、若,则 7、若,则化简后为( )A. B. 8、与不是同类二次根式的是( ) A. B. C. D. 9、下列根式中,是最简二次根式的是( ) A. B. C. D. 10、若,则= 若的整数部分为,小数部分为,则= 11、计算:的值是( )A. 0 B. C. D. 或C. D. 12
4、、若2m-4与3m-1是同一个数的平方根,则m为( ) A、-3 B、1 C、-3 或1 D、-113、 14、已知a是整数部分,b是 的小数部分,求的值。15、若的整数部分是a,小数部分是b,则 。16、若的整数部分为x,小数部分为y,求的值.17、当al且a0时,化简 18、当a0,b0时,a2b可变形为()(A)(B)(C)(D)19、若和都是最简二次根式,则。20、在中,与是同类二次根式的是 。 分母有理化1、分母有理化-把分母中的根号化去,叫做分母有理化。2、有理化因式-两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,称这两个代数式互为有理化因式。3、有理化因式确定方法如下
5、: 单项二次根式:利用完全平方公式来确定,如:,与等分别互为有理化因式。两项二次根式:利用平方差公式来确定。如与,分别互为有理化因式。4、分母有理化的方法与步骤: 先将分子、分母化成最简二次根式; 将分子、分母都乘以分母的有理化因式,使分母中不含根式;最后结果必须化成最简二次根式或有理式。5、一般常见的互为有理化因式有如下几类: 与; 与; 与; 与例题1、+的有理化因式是_; x-的有理化因式是_;-的有理化因式是_。例题2、把下列各式的分母有理化 (1) (2) (3); (4); (5)例题3、如果n是任意正整数,那么=n试证明例题4、当x=时,求+的值(结果用最简二次根式表示)例题5、化简: (3);当堂训练 1、写出下列各式的有理化因式:2、化简(1) (2) (3)3、a的有理化因式是_4、已知a、b、c为正数,d为负数,化简_5、化简:(75)2000·(75)2001_6、若0x1,则= . 7、已知,求下列各式的值:(1)(2)计算8、()() 9、;10、(a2)÷a2b2;11、()÷()(ab)12、已知x,y,求的值13、当x
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 铁路轨道施工项目招标文件编写模板
- 第六单元名著导读《水浒传》(素养进阶教学设计)语文统编版九年级上册
- 排球赛事票务精准营销创新创业项目商业计划书
- 夏季超薄EVA拖创新创业项目商业计划书
- 挖掘机械智能化升级方案创新创业项目商业计划书
- 搪瓷气体吸收塔与洗涤塔创新创业项目商业计划书
- 基于深度学习的物料识别与分类机器人创新创业项目商业计划书
- 多功能幕墙遮阳系统创新创业项目商业计划书
- Unit4课时1SectionA(1a-Pronunciation)教学设计件-七年级英语上册(人教版2024)
- 2026届湖南省怀化市中方县二中化学高一上期末检测试题含解析
- 2025-2026学年外研版(三起)(2024)小学英语三年级上册期中检测试卷及答案
- 2025消防月消防安全知识培训课件
- 大规模数据标注技术-洞察及研究
- 2025至2030钛合金产业行业项目调研及市场前景预测评估报告
- 消防工程监理质量评估及验收报告
- GB 14930.2-2025食品安全国家标准消毒剂
- IT设备维保方案-详细版附清单
- GB 17498.4-2008固定式健身器材第4部分:力量型训练长凳附加的特殊安全要求和试验方法
- 11466现代企业人力资源管理概论第12章
- 椭圆的离心率市公开课金奖市赛课一等奖课件
- UG有限元分析第13章
评论
0/150
提交评论