


下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、精选优质文档-倾情为你奉上函数的单调性与奇偶性1若为偶函数,则下列点的坐标在函数图像上的是 A. B. C. D. 2下列函数中,在区间(0,1)上是增函数的是 A. B. C. 3下列判断中正确的是 A是偶函数 B是奇函数C在-5,3上是偶函数 D是偶函数4若函数是偶函数,则是 A奇函数 B偶函数 C非奇非偶函数 D既是奇函数又是偶函数5已知函数f(x)是R上的增函数,A(0,1)、B(3,1)是其图象上的两点,那么|f(x+1)|<1的解集是 A(1,2) B(1,4) C(,14,+ ) D(,12,+ ) 6.已知函数为奇函数,且当时,则当时,的解析式为 A. B. C. D.7
2、定义在R上的偶函数在(,0上单调递增,若,则,的大小是 A、 B、 C、 D、与,的取值有关8.奇函数在区间上是减函数且有最小值,那么在上是A、减函数且有最大值 B、减函数且有最小值C、增函数且有最大值 D、增函数且有最小值9函数f(x)在区间(2,3)上是增函数,则y=f(x5)的递增区间是A(3,8)B(7,2)C(2,3) D(0,5)10函数f(x)=在区间(2,)上单调递增,则实数a的取值范围是A(0,)B( ,) C(2,) D(,1)(1,)11.函数y=-2ax+1,若它的增区间是2,+,则a的取值是_ _;若它在区间2,+ 上递增,则a的取值范围是_ _12.已知f(x)是奇
3、函数,定义域为x|xR且x0,又f(x)在(0,+)上是增函数,且f(-1)=0,则满足f(x)>0的x取值范围是_ _13若f(x)是定义在R上的偶函数,且当x0时为增函数,那么使f()<f(a)的实数a的取值范围 _14已知是奇函数,是偶函数,且,则 _15已知函数(1)在图5给定的直角坐标系内画出的图象;(2)写出的单调递增区间16试判断函数在,+)上的单调性17、设函数对于任意都有且时(1)求; (2)证明是奇函数; (3)试问在时是否有最大、最小值?如果有,请求出来,如果没有,说明理由;18已知函数f(x)=,x1,(1)当a=时,求函数f(x)的最小值;(2)若对任意x1,f(x)0恒成立,试求实数a的取值范围参考答案:CADA
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 河南不饱和聚酯树脂项目申请报告
- 2025年年产5000吨电子级氢氟酸项目可行性研究报告
- 2025年中国燃油催化剂项目商业计划书
- 中国液态硅橡胶(LSR)项目投资计划书
- 中国乳化液泵项目投资计划书
- 果酒生产技术 课件05果酒生产技术-葡萄汁的制备
- 2025年道路工程材料试卷及答案
- 2025年机械通气相关试卷及答案
- 中国涂层树脂项目创业计划书
- 小学语文教学“统·整”视域的三维模型建构与应用
- 2025西南证券股份有限公司校园招聘300人笔试参考题库附带答案详解
- 日语五十音图课件
- 供水安全技术培训课件
- 《路基构造》课件
- 2026年中国农业银行秋季校园招聘即将开始考试笔试试题(含答案)
- 2025年秋新北师大版数学二年级上册全册教案
- 2025年排污许可试题及答案
- 《大学美育(AIGC版微课版)》课件 项目二 绘画之美
- .新课7 必修第一册Unit4 Loo.king good,feeling good (词汇+课文)(译林版2020)(解析版)2025年初升高英语无忧衔接(通.用版)
- 复发转移性宫颈癌诊疗指南(2025版)解读课件
- 检验科质量标准手册
评论
0/150
提交评论