解线性方程组的消元法及其应用_第1页
解线性方程组的消元法及其应用_第2页
解线性方程组的消元法及其应用_第3页
解线性方程组的消元法及其应用_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、解线性方程组的消元法及其应用 (朱立平 曲小刚) l      教学目标与要求通过本节的学习,使学生熟练掌握一种求解方程组的比较简便且实用的方法高斯消元法,并能够熟练应用消元法将矩阵化为阶梯形矩阵和求矩阵的逆矩阵.l      教学重点与难点教学重点:解线性方程组的高斯消元法,利用消元法求逆矩阵.教学难点:高斯消元法,利用消元法求逆矩阵.l      教学方法与建议先向学生说明由于运算量的庞大,克莱姆法则在实际应用中是很麻烦的,然后通过解具体的方

2、程组,让学生自己归纳出在解方程组的时候需要做的三种变换,从而引出解高阶方程组比较简便的一种方法高斯消元法,其三种变换的实质就是对增广矩阵的初等行变换,最后介绍利用消元法可以将矩阵化为阶梯形矩阵以及求矩阵的逆。l      教学过程设计1.问题的提出由前面第二章的知识,我们知道当方程组的解唯一的时候,可以利用克莱姆法则求出方程组的解,但随着方程组阶数的增高,需要计算的行列式的阶数和个数也增多,从而运算量也越来越大,因此在实际求解中该方法是很麻烦的.引例 解线性方程组 解 (1) 用回代的方法求出解即可.问题:观察解此方程组的过程,我们总共作了三种

3、变换:(1)交换方程次序,(2)以不等于零的数乘某个方程,(3)一个方程加上另一个方程的倍.那么对于高阶方程组来说,是否也可以考虑用此方法.2.矩阵的初等变换定义1 阶梯形矩阵是指每一非零行第一个非零元素前的零元素个数随行序数的增加而增加的矩阵.定义2 下面的三种变换统称为矩阵的初等行变换:i. 互换矩阵的两行(例如第行与第行,记作),ii. 用数乘矩阵的某行的所有元素(例如第行乘,记作),iii. 把矩阵某行的所有元素的倍加到另一行的对应元素上去(例如第行的倍加到第行上,记作).同理可以定义矩阵的初等列变换.定义3 如果矩阵经过有限次初等变换变为矩阵,则称矩阵与等价,记作.注:任意一个矩阵总

4、可以经过初等变换化为阶梯形矩阵.3. 高斯消元法对于一般的阶线性方程组 (3.1)若系数行列式,即方程组有唯一解,则其消元过程如下:第一步,设方程(1)中的系数将方程与(1)对调,使对调后的第一个方程的系数不为零.作,得到同解方程组 (3.2)第二步,设,保留第二个方程,消去它以下方程中的含的项,得 (3.3)照此消元,直至第步得到三角形方程组 (3.4)接下来的回代过程首先由(3.4)的最后方程求出,依次向上代入求出即可.高斯消元法用矩阵初等变换的方法表示就是注:用高斯消元法求解线性方程组,是对线性方程组作三种初等行变换(某个方程乘非零常数k;一个方程乘常数k加到另一个方程,对换两个方程的位置),将其化为同解的阶梯形方程组,这一消元过程用矩阵来表示就是对方程组的增广矩阵施行初等行变换,化为阶梯矩阵.因此,求解线性方程组时不能对增广矩阵施行对换矩阵的两列以外的列变换,若对换矩阵的两列,相应地未知元也要对换.4. 应用(1)化矩阵为阶梯形例1 试用消元法化为阶梯形矩阵,解 =则即为所求的与等价的阶梯形矩阵.(2)求逆矩阵利用初等行变换求逆矩阵的方法主要分为以下三步:a) 将矩阵与同阶的单位方阵拼成;b)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论