




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、第七章 磁介质一、判断题1、顺磁性物质也具有抗磁性。2、只有当M=恒量时,介质内部才没有磁化电流。×3、只要介质是均匀的,在介质中除了有体分布的传导电流的地方,介质内部无体分布的磁化电流。4、磁化电流具有闭合性。5、仅由传导电流决定而与磁化电流无关。×6、均匀磁化永久磁棒内方向相反,棒外方向相同。7、在磁化电流产生的磁场中,线是有头有尾的曲线。8、由磁场的高斯定理,可以得出的结论。×9、一个半径为a的圆柱形长棒,沿轴的方向均匀磁化,磁化强度为M,从棒的中间部分切出一厚度为b<<a的薄片,假定其余部分的磁化不受影响,则在间隙中心点和离间隙足够远的棒内一点
2、的磁场强度相等。×10、磁感线在两种不同磁介质的分界面上一般都会发生“折射”,设界面两侧介质的相对磁导率分别为,界面两侧磁感线与界面法线的夹角分别为。二、选择题1、在一无限长螺线管中,充满某种各向同性的均匀线性介质,介质的磁化率为设螺线管单位长度上绕有N匝导线,导线中通以传导电流I,则螺线管内的磁场为:(A) (B) (C) (D)C2、在均匀介质内部,有传导电流处,一定有磁化电流,二者关系如下:(A) (B) (C) (D)A3、图是一根沿轴向均匀磁化的细长永久磁棒,磁化强度为M图中标出的1点的B是:(A) (B)0 (C) (D)A4、图中一根沿轴线均匀磁化的细长永久磁棒,磁化强
3、度为M,图中标出的1点的H是:(A)1/2M (B)-1/2M (C)M (D)0B5、图中所示的三条线,分别表示三种不同的磁介质的BH关系,下面四种答案正确的是:(A)抗磁质,顺磁质, 铁磁质。(B)顺磁质, 抗磁质, 铁磁质。(C)铁磁质,顺磁质, 抗磁质。(D)抗磁质, 铁磁质,顺磁质。A6、如图所示,一半径为R,厚度为的盘形介质薄片被均匀磁化,磁化强度为的方向垂直于盘面,中轴上,1、2、3各点处的磁场强度是: (B) © (D)A7、一块很大的磁介质在均匀外场的作用下均匀磁化,已知介质内磁化强度为M,M的方向与H的方向相同,在此介质中有一半径为a的球形空腔,则磁化电流在腔中心
4、处产生的磁感应强度是:(A) (B) (C) (D)B8、一无限长的同轴电缆线,其芯线的截面半径为,相对磁导率为,其中均匀地通过电流I,在它的外面包有一半径为的无限长同轴圆筒(其厚度可忽略不计),筒上的电流与前者等值反向,在芯线与导体圆筒之间充满相对磁导率为的均匀不导电磁介质。则磁感应强度B在区中的分布为:(A)B=0 (B) (C) (D)C三、填空题1、一顺磁性物质制成的样品被吸收到磁场较强的一侧,当它与磁极接触后,作( )运动。 振荡2、与电子的进动相联系的附加磁距 =( )。3、一无限长的载流圆柱体浸在无限大的各向同性的均匀线性的相对磁导率的的磁介质中,则介质中的磁感强度与真空中的磁感
5、强度之比是( )。4、只适用于( )介质。各向同性均匀线性非铁磁5、对铁磁性介质三者的关系是( )。6、对于细长永久磁棒而言,图中所标出的1、2两点的B值相等,即,其理由是( )。 磁感强度的法向分量是连续的7、作一封闭曲面,把一截面面积为S,磁化强度为µ的永磁棒一端包围在其中,则( )。- MS8、具有缝隙的磁路,如图所示,它可看作是磁导率为,长度为L的一段磁路与磁导率=1,长度为Lg的一段磁路的串联。串联磁路中磁感应通量的表达式( )和串联磁路的等效磁阻( )。 9、假如把电子看成是一个电荷和质量均匀分布的小球,设其质量为m,电量为e按经典观点电子的自旋磁距和自旋角动量的比值是(
6、 )。10、一沿轴向均匀磁化的圆锥形磁体磁化强度为(如图所示),此圆锥体高为h,底面半径为R,则该锥体的磁化电流面密度是( ).总磁距是( )。 10题图 11题图 13题图11、一内半径为a,外半径为b的介质半球壳,如图所示,被沿Z轴的正方向均匀磁化,磁化强度为M,则球心O处磁感应强度B等于( )。 012、无限长圆柱形均匀介质的电导率为,相对磁导率为,截面半径为R,沿轴向均匀地通有电流I,则介质中电场强度E=( ),磁感强度B=( )。 13、如图所示,是一个带有很窄缝隙的永磁环,磁化强度为M,则图中所标各点磁场强度为:= ( ); ( ) ; = ( )。 M 0 014、一铁环中心线的
7、周长为300m,横截面积为1.0×10-4m2,在环上 紧紧地绕有300匝表面绝缘的导线,当导线中通有电流32×10-3A时,通过环的磁通量为2.0×10-6Wb。则(1)铁环内磁感应强度的大小为( ), (2 ) 铁环内磁场强度的大小为( ),(3)铁的相对磁导率( ),(4)铁环内磁化强度的大小为( )。2×10-2T 32A/m 497.6 1.6×104A/ m15、一铁芯螺环由表面绝缘的导线在铁环上密绕而成,环的中心线是500mm,横截面积是1×10-3m2,现在要在环内产生B=1.0T的磁场,由铁的BH曲线得到这时的=79
8、6,则所需的安匝数是( )。如果铁环上有一个2.0mm宽的空气隙所需的安匝数是( )。5.0×102安匝 2.1×103安匝 16、在磁路中若不绕线圈,而用长为的永磁体换下相应的一段,已知此永磁体内的平均磁场强度为Hm,这种情况下的磁路定理是( )。 HmLm=mRm 四、问答题1、软磁材料和硬磁材料的磁滞回线各有何特点?答:软磁材料的磁滞回线窄而瘦,矫顽力很小,磁滞损耗低,容易磁化,也容易去磁。硬磁材料矫顽力很高。磁滞回线宽而胖,磁滞损耗很高。剩磁很大。2、把一铁磁物质制的空腔放在磁场中,则磁场的磁感应线集中在铁芯内部,空腔中几乎没有磁场,这就提供了制造磁屏蔽壳的可能。试
9、用并联磁路的概念说明磁屏蔽的原理。答:将一个铁壳放在外磁场中,则铁壳的壁与空腔中的空气可以看成是并联的磁路。由于空气的磁导率接近于1,而铁壳的磁导率至少有几千,所以空气的磁阻比铁壳壁的磁阻大得多,这样一来,外磁场的磁感应通量的绝大部分将沿着空腔两侧的铁壳壁内“通过”,“进入”空腔内部的磁通量是很小的。这就可以达到磁屏蔽的目的。3、在工厂里,搬运烧红的钢锭,为什么不能用电磁铁的起重机。答:钢是一种铁磁质,在外场作用下,内部的磁畴定向排列,本身为强磁体,能被电磁铁吸引。但是钢锭烧红,温度超过居里点(),内部的磁畴结构被破坏,丧失其铁磁质的特性,在外场作用下,磁化程度极微弱,与外场的相互作用力很小,
10、电磁铁不能被它吸引起来,因此搬移它时不能采用电磁铁的起重机。4、有两根铁棒,其外形完全相同,其中一根为磁铁,而另一根则不是,你怎样由相互作用来判别它们?答:可将一根铁棒的一端,靠近另一根铁棒的中间,如果有明显的吸引力,说明前者是磁铁,而后者不是。如果没有明显的相互吸引,说明前者不是磁铁,后者才是磁铁。因为磁棒两端的磁场最强,将它与磁质靠近,铁磁质就会被磁化,磁化后在磁铁的非均匀场中要受引力。若将磁铁的中间靠近其它铁磁质,因中间的磁场太弱磁化作用很小,相互作用力就不明显。五、证明题1、在均匀磁化的无限大磁介质中挖去一个半径为r,高为h的圆柱形空腔,而不扰乱其余部分的磁化,此空腔的轴平行于磁化强度
11、M。试证明:(1)对于细长空腔(h>>r),空腔中点的H与磁介质中的H相等。(2)对于扁平空腔(h<<r),空腔中点的B与磁介质中的B相等。证明(1)在介质内作细长圆柱形空腔(),如图1-1所示,在空腔与介质交界面上产生磁化电流,由知,磁化电流面密度为其方向如图1-1所示,磁化电流在空腔内中点1和空腔外的场分别为 总的磁感强度和磁场强度分别为 空腔中点空腔外 图1-1由、式得证毕(2)在介质中作一扁平空穴(),如图1-2所示,在空腔与介质交界面上产生生磁化电流,由知,磁化电流面密度为其方向如图1-2所示,它在空腔中点2处产生的磁感强度,可对比圆电流磁场公式得,于是空腔中
12、点2处总磁感强度为 在空腔外介质中的磁感强度为 所以证毕图1-22、磁感线在两种不同磁介质的分界面上一般都会发生“折射”。射界面两侧介质的相对磁导率分别为,界面两侧磁感线与界面法线的夹角分别为1和2,试证明 证明:磁感线在两种不同介质的分界面上发生“折射”设、是,与法线的夹角,如图所示,由图可知 所以由边界条件知代入上式得证毕3、在均匀磁化的无限大磁介质中挖一个半径为r,高为h的圆柱形空腔,其轴线平行于磁化强度M,试证明:对于扁平空腔(h<<r),空腔中心的B与磁介质内的B相等。证明:磁化电流,在空腔中点处产生的附加磁场可对比圆电流磁场因为r>>h,所以,空腔中点的总场
13、强为。而空腔外介质中的磁磁感应强度也为,故两者相等4、试证明两磁路并联时其等效磁阻Rm满足 证明:设有一磁路如图4-1所示,其中部绕线圈的铁芯磁阻为Rmo,左边铁芯磁路的磁阻Rm1,右边磁路磁阻为Rm2,中部铁芯磁动势为,由磁路定理得假设有一磁路如图4-2所示。磁动势亦为,绕线圈处铁芯的磁阻亦为Rm0,磁路其余部分的磁阻为Rm,磁路的磁通亦为,由磁路定理得由式、得所以 图4-1而将、式代入式得 图4-2则六、计算题1、 计算均匀磁化介质球的磁化电流在轴线上所产生的磁场。解:考虑一半径为a的磁介质球,因为均匀磁化,磁化强度为恒量,只是在球的表面上有面分布的磁化电流,如图1-1所示,其电流面密度为
14、如图1-2所示,把整个球面分成许多球带通过宽度为的一条球带上的电流为设P点的坐标为Z,因此半径为的球 带在P点产生的磁场为 于是轴线上任一点P的磁场为 图1-1 图1-2式中 是整个球体内所有分子磁矩的总和。这表示,一个均匀磁化球上的磁化电流在球外轴线上的磁场等效于一个磁矩为m的圆电流的磁场。即磁化电流在球内轴线上的磁场与考察点在Z轴上的位置无关,方向平行与磁化强度。2、在一无限长的螺线管中,充满某种各向同性的均匀线性介质,介质的磁化率为,设螺线管单位长度上绕有N匝导线,导线中通以传导电流I,求螺线管内的磁场。解:无限长螺线管内的磁场是均匀的,均匀的磁介质在螺线管内被均匀磁化,磁化电流分布在介
15、质表面上,其分布与螺线管相似。传导电流单独产生的磁场为磁化电流单独产生的磁场为于是,螺线管内的磁感强度为得即介质中的磁感强度为传导电流单独产生磁感强度的倍。称为介质的相对磁导率。3、一无限长的圆柱体,半径为R,均匀通过电流,电流为I ,柱体浸在无限大的各向同性的均匀线性磁介质中,介质的磁化率为,求介质中的磁场。解:由于介质是均匀无限大的,只有在介质与圆柱形导体的交界面上,才有面分布的磁化电流,磁化电流面密度为通过圆柱面的磁化电流为根据对称性,可知传导电流单独产生的磁场为磁化电流单独产生的磁场为介质中任一点的磁感强度为 ,有于是,任意一点的磁感强度为当均匀的磁介质充满场空间时,介质中的磁感强度是
16、传导电流单独产生的磁感强度的倍。4、在一无限长的螺线管中,充满某种各向同性的均匀线性介质,介质的磁化率为。设螺线管单位长度上绕有N匝导线,导线中同以传导电流I,球螺线管内的磁场(见图)。(应用介质的安培环路定理计算)在一无限长的螺线管中,充满某种各向同性的均匀线性介质,介质的磁化率为,设螺线管单位长度上绕有N匝导线,导线中通以传导电流I,求螺线管内的磁场。解:作如图所示的闭合积分路径,注意到在螺线管外B=0,因而H=0,在螺线管内,B平行于轴线,因而H也平行于轴线。根据介质中的安培环路定理,于是得代入物态方程,得5、一无限长的圆柱体,半径为R,均匀通过电流,电流为I ,柱体浸在无限大的各向同性
17、的均匀线性磁介质中,介质的磁化率为,求介质中的磁场。解:作如图所示的闭合积分路径,它是一半径为r的圆周,圆面与载流圆柱垂直。根据介质中的安培环路定理,于是代入物态方程得6、如果磁化球的磁化是永久的,不存在外源产生的磁场,那么磁化电流在球内和球外产生的磁场也就是球内和球外的真实磁场,试求出球内外沿z轴的磁场强度。解:因为在球内,沿Z轴的磁感强度为故球内的磁场强度为即球内的与同方向,但与的方向相反。在球外,Z轴上的磁感强度为故球外Z轴上的磁场强度为磁化球内外B线和H线的分布如图所示。7、相对磁导率为和的两种均匀磁介质,分别充满x>0和x<0的两个半空间,其交界面上为oyz平面,一细导线
18、位于y轴上,其中通以电流为,求空间各点B和H。解:由于导线很细,可视作几何线,除了导线所在处外,磁感强度与界面垂直,故磁化电流只分布在导线所在处,界面的其他地方无磁化电流分布。磁化电流分布也是一条几何线。根据传导电流和磁化电流的分布特性,可确定B矢量的分布具有圆柱形对称性,故由得由物态方程得由介质中磁场的安培环路定理所以于是8、一通有电流I 的长直导线放在相对磁导率为 的半无限大磁介质前面,与磁介质表面的距离为a,试求作用于直线每单位长度上的力。解:取介质表面为平面,轴与载流导线平行,电流垂直于纸面指向读者,设在距原点处的P点的磁化电流密度为,如图8-1所示。图8-1 图8-2(1)求磁化电流
19、 传导电流在P点产生的场其切向分量为 磁化电流在P点附近产生的场介质一侧:真空一侧: 总电流在P点附近两侧产生场的切向分量 由边界条件求 其中,(2)求磁化电流在(a,0,0)点激发的场介质表面距轴远处宽度中的磁化电流为,如图8-2所示。它在x=a,y=0处激发的磁感强度的方向分量为整个表面的磁化电流在该处激发的合磁场为(3)求磁化电流对载流导线的作用力由安培公式可得磁介质作用于单位长度导线上的吸引力为9、计算电容器充电过程中的能流密度和电容器能量的变化率解:考虑一平行板电容器,其极板是半径为a的圆板,两板之间的距离为b,设b<<a,假定电容器正被缓慢充电。在时刻t,电容器中的电场
20、强度为E,电场能为因此,能量的变化率为在充电过程中,能量通过电容器的边缘的间隙流进电容器中,使电容器能量增加。变化的电场产生位移电流为根据安培环路定理,位移电流产生的磁场强度为由物态方程得电容器边缘处的磁感强度为故边缘处的能流密度为其方向平行于电容器的极板,指向电容器的中心,如图所示。单位时间内,流进电容器的总能量即总能流为在充电过程中,能量并非通过导线流入电容器,而是通过电容器的边缘的间隙流进去的。10、假如把电子看成是一个电荷和质量均匀分布的小球,设其质量为m,电量为e,试用经典观点计算电子的自旋磁矩和自旋角动量的比值。解:设小球的半径为R,自旋角速度为,如图所示,小球的质量密度和电荷密度
21、分别为在小球上按坐标取一体积元,则质量元和电荷元分别为电荷元在旋转时产生圆电流为该圆电流产生的磁矩为电子自旋磁矩为由角动量定义知,质量元的角动量为电子自旋角动量为所以,电子的自旋磁矩和自旋角动量的比值为11、假定把氢原子放进磁感强度B为2.0T的强磁场,氢原子的电子轨道平面与磁场方向垂直,轨道半径保持不变,其值为,电子速度为,试计算电子轨道磁矩的变化,并求其与电子轨道的磁矩的比值。解:电子在强磁场作用下产生拉摩进动,进动角速度为电子的进动产生的附加磁矩即为电子轨道磁矩的变化,即电子轨道的磁矩为所以,电子轨道磁矩变化与电子轨道磁矩的比值为12、如图所示,如果样品为一抗磁性物质,其质量为,密度为,
22、磁化率为,并且已知该处的,B的空间变化率为17T/m,试计算作用在此样品上的力。解:设样品为薄圆柱体,厚度为,横截面积为S,则样品的体积为,由样品的质量和密度求得样品的体积为样品的磁矩为因为所以样品在非匀强磁场中所受到的力为其方向指向N极13、一抗磁质小球的质量为,密度为,磁化率为,放在一个半径为R=10cm的圆线圈的轴线上,距圆心为(见图),线圈中载有电流I=100A,求电流作用在抗磁质小球上的力的大小和方向。解:载流圆线圈在小球处产生的磁场为设介质的磁化强度为M,磁化电流在介质球内产生的场为由磁化强度与磁感应强度的关系得整理得介质球的磁矩为抗磁质小球所受到的力为其方向指向场强弱的地方即为斥
23、力 14、一长螺线管,长为l,由表面绝缘的导线密绕而成,共绕有N匝,导线中通有电流I.一同样长的铁磁质棒,横截面和这螺线管相同,棒是均匀磁化的,磁化强度为M,且M=NI/l。在同一坐标纸上分别以该螺管和铁磁棒的轴线为横坐标x,以它们轴线上的B、和为横坐标,画出螺线管和铁磁棒内外的B-x,M-x和曲线解:(1)无铁芯时螺线管为空心螺线管,故,且当L>>R管内磁感应强度近于均匀,只有在端点附近才下降到,又,则曲线如图14-1所示 图14-1 图14-2(2)对于铁磁棒,传导电流为零,故,铁磁棒表面磁化电流密度在轴线上任一点产生的附加场为当L>>R时,在磁棒内部,在棒端,为常
24、数,则曲线如图14-2所示15、在真空中有两无限大的导电介质平板平行放置,载有相反方向的电流,电流密度均匀为j,且均匀分布在载面上,两板厚度均为d,两板的中心面间距为2d,如图15-1如示,已知两块线性介质平板的相对磁导率分别为和,求空间各区域的磁感强度。解:空间各点的由两块载流平板叠加而成,先求一载流平板在其内外产生的场载流平板产生的场是面对称,如图15-2所示,作一矩形环路,由环路定理得所以板内的磁场强度和磁感强度分别为同理 所以板外磁场强度和磁感强度分别为 图15-1 由叠加原理得各区段磁感强度为 图15-216、一块面积很大的导体薄片,沿其表面某一方向均匀地通有面电流密度为i的传导电流
25、,薄片两侧相对磁导率分别为的不导电无穷大的均匀介质,试求这薄片两侧的磁场强度H和磁感强度B。解:在有传导电流处一定有磁化电流,如图所示,由对称性和环路定理得 由得,薄板两侧的磁场强度分别为 , 由图得的环流为 由式得 将式代入式得 所以 16、如图16-1所示,一厚度为b的大导体平板中均匀地通有体密度为j的电流,在平板两侧分别充满相对磁导率为的无穷大各向同性、均匀的不导电介质,设导体平板的相对磁导率为1,忽略边缘效应,试求:导体平板内外任一点的磁感强度。解:当无限大均匀磁介质平板有传导电流通过时,磁介质就要磁化,于是出现与传导电流平行的体磁化电流及两个面磁化电流。由于所有电流方向均与y轴平行,
26、所以的方向平行与z轴,根据无限大平板、平面电流产生的磁场的特点,电流两侧磁场一定反向,故两侧的也一定反向(一边为正,另一边即为负)。由于题中无面传导电流,的切向分量必须连续变化,故在z轴上必须有一点为零,图16-2中虚线处所在的平面即为=0的平面 板外:(1)做一过H=0所在平面的矩形回路ABEF,如图16-2所示。AB=h。设yoz面到导体板左边的距离为,到导体板右边的距离为。由环路定理得右侧磁场强度和磁感强度为同理,过H=0的面左侧取环路如图16-2,由环路定理得 图16-1因板外两侧的磁感强度大小相等,即所以又因为 由上两式解得所以 图16-2其矢量式为(2)平板内:过所在平面作一矩形环
27、ABCD,AB=h,C=x,如图16-3所示,由安培环路定理得 图16-317、如图17-1所示,在两块相对磁导率为的无限大均匀磁介质间夹有一块大导电平板,其厚度为d,板中载有沿z方向的体电流,电流密度j沿x方向从零值开始均匀增加,即dj/dx=k(k为正的常数),设导电板的相对磁导率为1,磁介质不导电,试问导电板中何处的磁感强度为0? 解:由于无面传导电注,体分布的传导电流两侧磁场方向相反,故在x轴上必有一点为零。设图17-2所示的虚线为的平面,该平面到板左侧距离为,到右侧距离为,取一矩形环路ABCD,在环路内取面元,通过该面元的电流为,由环路定理得右侧: 图17-1 同理 左侧:因为 所以
28、 图17-218、相对磁导率分别为的两磁介质的分界面是一无穷大平面,界面上有两根无限长平行细直线电流,电流均为I,相距为d,求其中一根导线单位长度上所受的力。解:磁化电流只分布在导线所在处,也是一条几何线设为,和的分布具有轴对称性,在一根导线处作一圆形线环路,如图18-1所示,根据环路定理有所以一根导线单位长度上所受的力为19、如图19-1所示,相对磁导率为的线性、各向同性的半无限大磁介质与真空交界,界面为平面,已知在真空一侧靠近界面一点的磁感强度为B,其方向与界面法线成角,试求: (1)在介质中靠近界面一点的磁感强度的大小和方向; (2)靠近这一点处磁介质平面的磁化电流面密度。解:设介质中磁
29、感强度为,其方向与界面法线成角,如图19-2所示,将分解到切向分量和法向分量有(1)由于在法向方向连续有 图19-1又由于在切向突变有所以,介质中和分别为 图19-2(2)将磁化强度为分解为和,由于不产生磁化电流,介质平面的磁化电流密度由产生,的大小为 磁化电流为20、中心线周长为20cm,截面积为4cm2的闭合环形磁芯,其材料的磁化曲线如图20-1所示。 (1)如需要在该磁芯中产生磁感强度为0.1T,0.6T,1.2T,1.8T的磁场,绕组的安匝数NI应多大? (2)若绕组的匝数为N=1000,上述各情况中,电流应为多大? (3)若通过绕组的电流恒为I=0.1A,绕组的匝数各为多少? (4)求上述各工作状态下材料的相对磁导率。解:(1)当时,由曲线查得,根据安培环路定律得 所以 安匝同理,当时,由曲线查得相应的所以安匝(2)当时,由得 同理 , , (3)当时,由得匝同理匝 , 匝 , 匝(4)由得同理 , , 21、铁环的平均周长l=61cm,在环上割一空隙lg=1cm(如图21-1所示),环上绕有绕圈N=1000匝。当线圈中流过电
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 运输业务佣金合同协议
- 郑州房车采购合同协议
- 买手房资金托管合同书
- 临时用工劳动合同
- 安装工程合作协议合同
- 车辆外包劳务合同协议
- 退货折旧费合同协议
- 路灯维修协议合同协议
- 软硬件采购合同协议
- 郑州市装饰装修合同协议
- 《中华人民共和国妇女权益保障法》全文解读2022年妇女权益保障法课件
- “九小”场所、沿街门店安全排查表
- GB/T 5248-1998铜及铜合金无缝管涡流探伤方法
- GB/T 40822-2021道路车辆统一的诊断服务
- GB/T 35714-2017船舶推进电动机
- GB/T 30099-2013实验室离心机通用技术条件
- GA/T 72-2013楼寓对讲电控安全门通用技术条件
- DBJ∕T13-356-2021 市政道路沥青路面施工全过程质量管理标准
- xx学校研学旅行活动告家长书
- 圣地非遗-鲁锦纹样特征
- 自动扶梯标准安装施工方案
评论
0/150
提交评论