


版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、填空与选择填空(本题答案写在此试卷上,30分)1模式识别系统的基本构成单元包括:模式采集、特征提取与选择和模式分类。2、 统计模式识别中描述模式的方法一般使用特真矢量 ;句法模式识别中模式描述方法一般有串、 树 、 网 。3、 聚类分析算法属于(1);判别域代数界面方程法属于(3) o(1)无监督分类(2)有监督分类(3)统计模式识别方法(4)句法模式识别方法4、 若描述模式的特征量为0-1二值特征量,则一般采用(4)进行相似性度量。(1)距离测度(2)模糊测度(3)相似测度(4)匹配测度(1)( 3)( 4) o炖帥Ff5、下列函数可以作为聚类分析中的准则函数的有(1)亠一 (2) 16、
2、Fisher线性判别函数的求解过程是将N维特征矢量投影在(2)中进行(1) 二维空间(2) 维空间(3) N-1维空间7、 下列判别域界面方程法中只适用于线性可分情况的算法有(1);线性可分、不可分都适用的有(3)o(1)感知器算法(2) H-K算法(3)积累位势函数法8 、下列四兀组中满足文法定义的有(1)( 2)(4)0(1) (A B, 0,1, A 01,A0A1 , A1 A0 ,BBA , B0,A)(2) ( A, 0, 1, A0, A0A舛(3) ( S, a,b, S00 S,S11 S, S00, S11,S)(4) ( A, 0,1, A 01, A0A1, A 1 A
3、0, A)、(15分)简答及证明题(1)影响聚类结果的主要因素有那些?(2)证明马氏距离是平移不变的、非奇异线性变换不变的。答:(1)分类准则,模式相似性测度,特征量的选择,量纲(2)证明:沪©耳)=(石-兀)厂点-即设,有非奇异线性变换:=召£ (禹-角隔-劇=召£朋刃区劝w1讯=R -刃区-5)'=卫兀川弓陆划二侪-丹),叩6-丹) 二(牟-旳)旷(感-如)=(鬲-初W罗月区-和 =区_右)4右4岭羽一口化一即 二(耳右JLT虫国-)=国-引叩瞒-即二di (石国)(2分)(2分)(1分)(1分)(4分)三、(8分)说明线性判别函数的正负和数值大小在分
4、类中的意义并证明之。答:(1) ( 4分)的绝对值“正比于亍到超平面-的距离二曲亍二-平面八的方程可以写成I7'式中一以 ;。于是r"l是平面匸的单位法矢量,上式可写成風示十叫I设/是平面二中的任一点,匸是特征空间二“中任一点,点:到平面的距离 为差矢量在上的投影的绝对值,即(1-1)上式中利用了-在平面二中,故满足方程式(1-1)的分子为判别函数绝对值,上式表明,叭初的值乩刖正比于无到超平面 ":-:1-的距离二,一个特征矢量代入判别函数后所得值的绝对值越大表明该特征点距判别界面越远。(2)( 4分)的正(负)反映壬在超平面匚1的正(负)侧 两矢量;;和二的数积为
5、-/- | '- / ' J(2 分)显然,当下和一夹角小于广时,即亍在示指向的那个半空间中, 泅(瓦住-刖0 ;反之,当月和(丘-刃夹角大于丸时,即丘在环背向的那个半空 间中,"门:0。由于',故严和1+1+同号。所以,当齐在 可指向的半空间中时,一;当亍在尸背向的半空间中。 判别函数值的正负表示出特征点位于哪个半空间中,或者换句话说,表示特征 点位于界面的哪一侧。五、(12分,每问4分)在目标识别中,假定有农田和装甲车两种类型,类型1和类型2分别代表农田和装甲车,它们的先验概率分别为 0.8和0.2,损失函数如表1所示。现在做了三次试验,获得三个样本的类概
6、率密度如下:': 0.3 , 0.1 , 0.6P(g) : 0.7 , 0.8 , 0.3(1)试用贝叶斯最小误判概率准则判决三个样本各属于哪一个类型;(2)假定只考虑前两种判决,试用贝叶斯最小风险准则判决三个样本各属于 哪一类;(3)把拒绝判决考虑在内,重新考核三次试验的结果。表15111m)= 3 F伍 0)二 3解:由题可知“,尺上:,円:也|納)二1 P(西|斟)二20(死隔)8 卅可|血)(1)( 4分)根据贝叶斯最小误判概率准则知:Pg 码)二FWP(冏丨如 芝巩魁)邱兀丨尙)丁 P(的)-il< -T -.:,则可以任判;:;:i,则判为:;一=:丄,则判为
7、9;;尸(兔】-卷)_ 03(5-1) .4(2)( 4分)由题可知:口 ' -则尸(可I函)7,判为叫;巩也丨納)/ 巩花1甥)亍,判为巴;0(西|眄)7,判为叭;(3)(4分)对于两类问题,对于样本-,假设已知,有心碍| x) = A(af如尸|兀)+爲(码|眄)尸血| t)=孤)则对于第一个样本,夙(碍I兀)=_,':,则拒判;1. 监督学习与非监督学习的区别:监督学习方法用来对数据实现分类,分类规则通过训练获得。该训练集由带分类号的数据集组成,因此监 督学习方法的训练过程是离线的。非监督学习方法不需要单独的离线训练过程,也没有带分类号(标号)的训练数据集,一般用来对数
8、据集进行分析,如聚类,确定其分布的主分量等。(实例:道路图)就道路图像的分割而言,监督学习方法则先在训练用图像中获取道路象素与非道路 象素集,进行分类器设计,然后用所设计的分类器对道路图像进行分割。使用非监督学习方法,则依据道路路面象素与非道路象素之间的聚类分析进行聚类运算,以实现道路图像的分割。2. 动态聚类是指对当前聚类通过迭代运算改善聚类;分级聚类则是将样本个体,按相似度标准合并,随着相似度要求的降低实现合并。3. 线性分类器三种最优准则:Fisher准则:根据两类样本一般类内密集,类间分离的特点,寻找线性分类器最佳的法线向量方向,使 两类样本在该方向上的投影满足类内尽可能密集,类间尽可能分开。该种度量通过类内离散矩阵 Sw和类间离散矩阵Sb实现。感知准则函数:准则函数以使错分
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2021年湖南省长沙市长郡名校联考高考数学一模试卷(含解析)
- 全面解析2024年广告设计师试题及答案
- 宠物医护考试题库及答案
- 采购主管面试题目及答案
- 宝安美术面试题目及答案
- 厨师基础知识试题及答案
- 助理广告师考试全线支持试题及答案
- 大模型时代的可观测技术探索与实践
- 2024年中国高校人才服务洞察报告
- 口腔招聘笔试试题及答案
- 2025年度农业保险合同
- 2025年九江市第一批面向社会公开招聘留置看护队员【68人】笔试备考试题及答案解析
- 2025届广东省高三下学期二模英语试题(原卷版+解析版)
- 2024年河北石家庄事业单位招聘考试真题答案解析
- 杭州师范大学附属医院与拱墅区双向转诊信息平台建设项目招标文件
- 线上养羊合同协议
- 2024年陕西延长石油有限责任公司管理人才招聘笔试真题
- 创造性使用中小学智慧教育平台典型案例
- 《中华人民共和国预算法》知识培训
- 人教版七年级地理下册第七章第四节-俄罗斯-课件
- DBJ50T-098-2019 城市绿化养护质量标准
评论
0/150
提交评论