




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、判断系稳定性的方法一、 稳定性判据(时域)1、 赫尔维茨判据系统稳定的充分必要条件:特征方程的各项系数全部为正;将系统特征方程各项系数排列成如下行列式;当主行列式及其对角线上的各子行列式均大于零时,即则方程无正根,系统稳定。赫尔维茨稳定判据之行列式直接由系数排列而成,规律简单明确,使用也比较方便,但是对六阶以上的系统,很少应用。例;若已知系统的特征方程为 试判断系统是否稳定。解:系统特征方程的各项系数均为正数。根据特征方程,列写系统的赫尔维茨行列式。由得各阶子行列式;各阶子行列式都大于零,故系统稳定。2、 劳思判据(1)劳思判据充要条件:A、系统特征方程的各项系数均大于零,即ai>0;B
2、、劳思计算表第一列各项符号皆相同。满足上述条件则系统稳定,否则系统不稳定,各项符号变化的次数就是不稳定根的数目。(2)劳思计算表的求法:A、列写劳思阵列,并将系统特征方程的系数按如下形式排列成列首两行,即: B、计算劳思表系数bi的计算要一直进行到其余的bi值都等于零为止。用同样的前两行系数交叉相乘,再除以前一行第一个元素的方法,可以计算c,d,e等各行的系数。(3)劳思判据的两种特殊情况A、劳思计算表第一列出现零的情况因为不能用零作为除数,故第一列出现零时,计算表不能继续排下去。为解决该问题,其办法是用一个小的正数代替0进行计算,再令0求极限来判别第一列系数的符号。B、劳思计算表中出现某一行
3、各项全为零的情况此时,劳思表将在全为零的一行处中断,其解决办法是将不为零的最后一行的各项组成一个“辅助方程式”,将该方程式对s求导数,用求得的各项系数代替原来为零的各项,然后按劳思计算表的写法继续写完以后各项,对称根可由辅助方程求得。例1:已知系统特征方程为 判别系统是否稳定,若不稳定,求不稳定根的数目。解:根据特征方程可知,其各项系数均为正。 列写劳思计算表并计算得: 当 0时, 故第一列有两次变号,系统特征方程有两个正根,系统不稳定。例2:已知控制系统的特征方程为 试判定系统的稳定性。 解:根据系统的特征方程可知,其各项系数均为正。列写劳思计算表并计算得:因s3行各项全为零,故以s4行的各
4、项作系数,列写辅助方程如下:将A(s)对s求导,得: 再将上式的系数代替s3行的各项系数,继续写出以下劳思计算表: 从劳思表的第一列可以看出,各项均无符号变化,故特征方程无正根。但是因s3行出现全为零的情况,故必有共轭虚根存在。共轭虚根可通过辅助方程求得 其共轭虚根为 ,这四个根同时也是原方程的根,他们位于虚轴上,因此该控制系统处于临界状态,系统不稳定。二、 根轨迹法(复域)系统稳定的充要条件:所有的闭环极点都在S平面的左半平面。例:已知系统的开环传递函数为GS=kss+10.5s+1,试应用根轨迹法分析系统的稳定性。解:GS=2kss+1s+2=K*SS+1S+2 (K*=2k)做根轨迹:(
5、a) 有三条根轨迹(n=3 m=0 n-m=3)(b) 实轴上(0,-1)(-2,-)为根轨迹段(c) 渐近线的夹角与坐标:a=(2k+1)n-m=±60°,180°,a=-1+(-2)3=-1 (d) 分离点坐标d:1d+1+1d+2+1d=0解得 d1= -0.423d2= -1.58 (舍去)因为d2不在根轨迹上(e) 与虚轴的交点坐标:DS=S3+3S2+2S+K*令S=jw 代入到式中得:Djw=(jw)3+3(jw)2+2jw+K*解得: -w3+2w=0-3w2+K*=0故 W1=0,W2=±1.414,W3=±1.414,K*=
6、6,K=3根轨迹图如下所示: 三、 频率特性1、 奈氏判据(奈奎斯特判据)Z=P-2N 系统稳定时Z=0由开环传递函数在S平面的极点个数P,奈氏曲线绕 (-1,j0)的圈数N,得到闭环传递函数在S平面的极点的个数ZP通过G(S)可知 N:顺时针为负,逆时针为正当V0时,需要做增补线 W:00+从幅相曲线W=0+位置开始沿逆时针方向画 V×90°的圆弧增补线(理论半径为) 计算圈数时要包括所画圆弧的增补线在内。例:某单位负反馈系统的开环传递函数为GS=KS2TS+1试用奈氏判据判别闭环稳定性。解: W:0+ 幅值趋于0,相角趋于-270°。N=-1,P=0,Z=P-2N=2故闭环系统不稳定。2、 对数频率判定系统稳定性N=N+-N-=P2在截止频率之前,在对数幅频曲线L(W)0.对应的频率范围对应的相角是否穿越 -180°在V0时,也需要做增补线,从对数相频特性曲线上W=0+处开始,用虚线向上补90°角(补到0
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年应急物流行业当前市场规模及未来五到十年发展趋势报告
- 收入费用与利润的课件
- 2025年注册安全工程师考试金属冶炼(中级)安全生产专业实务试卷及答案指导
- 2025年全国大学生525心理知识竞赛题库及答案
- 2024年特岗教师招聘考试题库(含答案)
- 2025商用厨具厨房设备模拟试题考题及答案
- 撞车后安全知识培训课件
- 2024年高级汽车美容保养及装潢工技术知识考试题库与答案
- 2025年《组织胚胎学》理论知识试题与答案
- 2025年事业单位教师考试公共基础知识试题(附答案)
- GB 38507-2020油墨中可挥发性有机化合物(VOCs)含量的限值
- GA/T 1162-2014法医生物检材的提取、保存、送检规范
- 例谈小组合作学习在小学英语教学中的有效开展(讲座)课件
- 煤矿安全规程2022
- 污水处理厂安全风险清单
- 营造林工试题库技师1
- 特种设备安全管理制度特种设备安全操作规程
- 连续安全技术交底8篇-1
- 2022年高校教师资格证(高校教师职业道德)考试题库高分300题带解析答案(安徽省专用)
- 公安派出所优质建筑外观形象设计基础规范
- C型钢检验报告
评论
0/150
提交评论