概率论 第三版 龙永红第二章习题及答案_第1页
概率论 第三版 龙永红第二章习题及答案_第2页
概率论 第三版 龙永红第二章习题及答案_第3页
概率论 第三版 龙永红第二章习题及答案_第4页
概率论 第三版 龙永红第二章习题及答案_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、第二章 练习题(解答)一、填空题:1设随机变量X的密度函数为:f(x)= 则用Y表示对X的3次独立重复的观察中事件(X)出现的次数,则P(Y2) 。解:ax+b 0<x<10 其他2. 设连续型随机变量的概率密度函数为:f (x) =且EX,则a = _-2_, b = _2_。3. 已知随机变量X在 10,22 上服从均匀分布,则EX= 16 ,DX= 12 4.设 5. 已知X的密度为 且P()=P() , 则= , b = 联立解得:6若f(x)为连续型随机变量X的分布密度,则1。7. 设连续型随机变量的分布函数,则P(=0.8)= 0 ;= 0.99 。8. 某型号电子管,

2、其寿命(以小时记)为一随机变量,概率密度,某一个电子设备内配有3个这样的电子管,则电子管使用150小时都不需要更换的概率为8/27。 (x)= x100 0 其它P(150)=1F(150)=1P(150)3=()3=9. 设随机变量X服从B(n, p)分布,已知EX1.6,DX1.28,则参数n_,P_。EX = np = 1.6DX = npq = 1.28 ,解之得:n = 8 ,p = 0.210. 设随机变量服从参数为(2,P)的二项分布,服从参数为(4,P)的二项分布,若P(1),则P(1)65/81。 解: 11. 随机变量XN(2, 2),且P(2X4)=0.3,则P(X0)=

3、0.2 12. 设随机变量X服从参数为1的指数分布,则数学期望E(xe2x)= _4/3_ 13. 已知离散型随机变量x服从参数为2的泊松分布,则随机变量z = 3x2的期望E (z)3EX-2=3x2-2=4 。 14设随机变量x服从参数为的泊松分布,且P ( x = 1) = P ( x=2 ) 则E (x) = _2_. D (x) = _2_ 15. 若随机变量服从参数=0.05的指数分布,则其概率密度函数为: ;E= 20 ;D= 400 。 16. 设某动物从出生活到10岁以上的概率为0.7,活到15岁以上的概率为0.2,则现龄为10岁的这种动物活到15岁以上的概率为17. 某一电

4、话站为300个用户服务,在一小时内每一用户使用电话的概率为0.01,则在一小时内有4个用户使用电话的概率为 P3(4)=0.168031 解:一小时内使用电话的用户数服从的泊松分布18 通常在n比较大,p很小时,用 泊松分布 近似代替二项分布的公式,其期望为 ,方差为 19xN(,),P(x5) 0.045,p(x3) 0.618,则1.8,4。 二、单项选择: 1、设随机变量X的密度函数为: 则使P(x>a)=P(x<a)成立的常数a = ( A ) ABCD12设F1(X)与F2(X)分别为随机变量X1与X2的分布函数,为使F(X)aF1(x)bF2(x)是某一随机变量的分布函

5、数,在下列给它的各组值中应取( A ) Aa=, b =Ba=, b=Ca=, b=Da=, b=F(+)=a F1 (+)-BF2 (+)=13. 已知随机变量的分布函数为F(x)= A + B arctgx ,则:( B )A、A= B= B、A= B= C、 A= B= D、A= B= 本题为课堂例题 4. 设离散型随机变量X仅取两个可能值X1和X2,而且X1< X2,X取值X1的概率为0.6,又已知E(X)1.4,D(X)0.24,则X的分布律为( ) A.x01B.x12p0.60.4p0.60.4C.xnn+1D.xabp0.60.4p0.60.4 1.4=EX=0.6X1+

6、0.4X2 DX=EX2-(EX)20.24=0.6X12 +0.4X22 -1.42联系、解得X1=1,X2=25现有10张奖券,其中8张为2元,2张为5元,今某人从中随机地无放回取3张,则此人得奖金额的数学期望为( )A6元B12元C7.8元D9元设表示得奖金额,则其分布律为: 6 9 12 P 故期望值为: 7.86. 随机变量X的概率分布是: X 1 2 3 4 P a b 则:( D )A、a=, b= B、a=, b= C、a=, b= D、a=, b= 7. 下列可作为密度函数的是:( B ) A、 B、 C、 D、 依据密度函数的性质:进行判断得出:B为正确答案8. 设X的概率

7、密度为,其分布函数F(),则( D )成立。 A、P( B、 C、P D、P9. 如果,而 ,则P(X)=( C ) A、 B、 C、0.875 D、 解: 10. 若随机变量X的可能取值充满区间,那么Sinx可以作为一个随机变量的概率密度函数。( B ) A0,B0.5, C0, 1.5D, 1.5解: 依据密度函数的性质:进行判断得出:B为正确答案11. 某厂生产的产品次品率为5%,每天从生产的产品中抽5个检验,记X为出现次品的个数,则EX ( D) A0.75B0.2375C0.487D0.25 此题X服从二项分布12. 设X服从二项分布,若(n1)P不是整数,则K取何值时,P(XK)最

8、大?( D )AK(n1)PBK(n1)PiCKnPDK(n1)P 13设X服从泊松分布,若不是整数,则K取何值时,P(XK)最大?(B)ABC1D114. ,Y=2X1,则Y( C ) A、N(0,1) B、N(1,4) C、N(-1,4) D、N(-1,3) 15. 已知随机变量X服从参数为2的指数分布,则其标准差为: ( C ) A2B1/4C1/2D 随机变量的参数为2,即方差为1/4,标准差则为1/2 16当满足下列( D )条件时,二项分布以正态分布为极限分布更准确。 AnBCD17. 设,已知,则和的概率分别为 C A. 0.0228 , 0.1587 B. 0.3413 , 0

9、.4772 C. 0.1587 , 0.0228 D. 0.8413 , 0.97725三、计算题: 1. 设随机变量X的密度函数为:A+B=3f(x) = AX 0X1 BX 1X20 其它试求:(1)常数A、B。 (2)分布函数F(X) (3)P()解:(1)由f(x)为连续的同时: ,又A+B=3解得:A=1,B=2 (2) 当 (3)2. 设已知X= ,求: P() 解: 3. 设随机变量X的密度函数为: ax 0<x<2 f(x)= cx + b 2x40 其他 已知 EX2, P(1<X<3),求a、b、c的值解:(1) (2) 4假定在国际市场上每年对我国

10、出口商品的需求量是随机变量X(单位:t),已知X服从2000,4000上的均匀分布,设每出售这种商品1t,可为国家挣得外汇3万元,但假如销售不出而囤积于仓库,则每吨需浪费保养费1万元,问应组织多少货源,才能使国家的平均收益最大?解:Y:每年该商品的出口量,R:收益, X:需求量 y=3500时,利益最大5 设某种商品每周的需求量X服从区间 10,30上均匀分布,而经销商店进货量为 10,30 中的某一整数,商店每销售一单位商品可获利500元,若供大于求,则削价处理,每处理一单位商品亏损100元,若供不应求,则可从外部调剂供应,此时一单位商品仅获利300元,为使商店所获利润期望值不少于9280元

11、,试确定最小进货量? 解:设进货量为a, 则利润为: 即:-7.52+350+52509280 解得:2026 取得小=21 上式: 6. 某高级镜片制造厂试制成功新镜头,准备出口试销,厂方的检测设备与国外的检测设备仍有一定的差距,为此,厂方面临一个决策问题: 直接进口, 租用设备, 与外商合资。不同的经营方式所需的固定成本和每件的可变成本如表: 自制 进口 租赁 合资 固定成本(万元) 120 40 64 200 每件可变成本(元) 60 100 80 40已知产品出口价为200元/件,如果畅销可销3.5万件,中等可销2.5万件,滞销只售0.8万件,按以往经验,畅销的可能性为0.2,中等的为

12、0.7,滞销的为0.1,请为该厂作出最优决策。 解:设 销量 , , , , 为最优方案,即租用设备。 7. 某书店希望订购最新出版的好书,根据以往的经验,新书销售量规律如下: 需求量(本)50100150200概 率20%40%30%10% 假定每本新书的订购价为4元,销售价为6元,剩书的处理价为2元,试确定该书店订购新书的数量。解:列收益表: 订 需求量Y 收益50 100 150 200 概率y1 50 y2 100y3 150y4 2000.2 0.4 0.3 0.1100 100 100 100 0 200 200 200-100 100 300 300 -200 0 200 400

13、 故订100本较合理。 8. 若连续型随机变量X的概率是 已知EX0.5,DX0.15,求系数a, b, c。解: 解方程组得: 9. 五件商品中有两件次品,从中任取三件。设为取到的次品数,求的分布律、数学期望和方差。 解:的分布律为0 1 2P1/10 6/10 3/10E= 1.2 ;D= 0.36 10. 某次抽样调查结果表明,考生的外语成绩(百分制)近似服从正态分布,平均成绩72分,96分的以上的占考生总数的2.3%,试求考生的外语成绩在60至84分之间的概率。 解: XN(72, 2) s即: 11. 假设一电路有3个不同种电气元件,其工作状态相互独立,且无故障工作时间都服从参数为&

14、gt; 0的指数分布,当三包元件都无故障时,电路正常工作,否则整个电路不能正常工作,试求电路正常工作的时间的概率分布。解:设Xi表示第i个电气之元件无故障工作的时间,i=1,2,3,则X1X2X3独立且同分布,分布函数为:设G(t)是T的分布函数。当t0时,G(t)=0t>0时,G(t)=P(Tt)=1-P(T>t) =1-P(X1>t,X2>tX3>t) =1-P(X1>t)P(X 2>t)p(X3>t) =1-P(X>t)3=1-1-F(t)3 =1-e -12. 设从一批材料中任取一件测出这种材料的强度XN(200,18),求: 取出

15、的该材料的强度不低于180的概率; 若某项工程要求所用的材料强度要以99%的概率保证不低于150,问这批材料是否合乎要求?解: 大于0.99,故这批材料合要求。13. 生产某种产品的废品率为0.1,抽取20件产品,初步检查已发现有2件废品,则这20件产品中,废品不少于3件的概率为多大? 解: =“20件产品中废品数目” “初步检查已发现有2件废品”=“2” “废品数不少于3件”=“ 3” p=0.1 q=0.9 n=20. 14. 某公司作信件广告,依以往经验每送出100封可收到一家定货。兹就80个城市中的每一城市发出200封信。求(1)无一家定货的城市数;(2)有三家定货的城市数。解:设发出200封信后有家定货,则B(200,0.01)近似服从参数为=2的泊松分布P(=0)0.1353 ,P(=3)0.1804(1) 无一家定货的城市

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论