




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、精选优质文档-倾情为你奉上1、设有限的可测函数,证明:存在定义在上的一列连续函数,使得于E。证明:因为 在上可测,由鲁津定理是,对任何正整数,存在的可测子集,使得, 同时存在定义在上的连续函数,使得当时,有所以对任意的,成立由此可得,因此即,由黎斯定理存在的子列,使得,于E2、设上的连续函数,为上的可测函数,则是可测函数。证明:记,由于在上连续,故对任意实数是直线上的开集,设,其中是其构成区间(可能是有限个,可能为可有为)因此因为在上可测,因此都可测。故可测。3、设是上的实值连续函数,则对于任意常数,是一开集,而总是一闭集。证明:若,因为是连续的,所以存在,使任意, 即任意是开集若且,由于连续
2、,即,因此E是闭集。 4、(1)设求出集列的上限集和下限集证明:设,则存在N,使,因此时,即,所以属于下标比N大的一切偶指标集,从而属于无限多,得,又显然若有,则存在N,使任意,有,因此若时,此不可能,所以(2)可数点集的外测度为零。证明:证明:设对任意,存在开区间,使,且所以,且,由的任意性得5、设是E上的可测函数列,则其收敛点集与发散点集都是可测的。证: 显然,的收敛点集可表示为 =.由可测及都可测,所以在上可测。从而,对任一自然数,可测。故 可测。既然收敛点集可测,那么发散点集也可测。6、设,存在两侧两列可测集,,使得 且(-)0,(n)则可测.证明:对于任意, ,所以 又因为 ,所以对
3、于任意,令 ,由0 得所以是可测的又由于可测,有也是可测的所以是可测的。7、设在上,而成立,则有设,则。所以因为,所以即 8、证明:。证明:因为,所以,从而反之,对任意,即对任意,有为无限集,从而为无限集或为无限集至少有一个成立,即或,所以,。综上所述,。9、证明:若,(),则于。证明:由于,而,所以,由,()得,。所以,从而,即于。10、证明:若,(),则()。证明:对任意,由于,所以,由可得,和至少有一个成立。从而,所以,。又由,()得,。所以,即()。11、若(),则()。证明:因为,所以,对任意,有,。又由()得,。所以,即()。12、证明:上的连续函数必为可测函数。证明:设是上的连续
4、函数,由连续函数的局部保号性,对任意实数,是开集,从而是可测集。所以,是上的可测函数。13、证明:上的单调函数必为可测函数。证明:不妨设是上的单调递增函数,对任意实数,记,由单调函数的特点得,当时,显然是可测集;当时,也显然是可测集。故是上的可测函数。14、设,是的可测子集,且,若,则。证明:因为是的可测子集,且,所以,从而由得,。又,由积分的绝对连续性,。15、设,若对任意有界可测函数都有,则于。证明:由题设,取,显然为上的有界可测函数,从而。所以,于,即于。16、设,证明(1);(2)。证明:由得,(1)。(2)由(1),注意到,由积分的绝对连续性得,从而注意到,所以,。17、若是上的单调
5、函数,则是上的有界变差函数,且。证明:不妨设是上的单调增函数,任取的一个分割则 ,所以,。18、若在上满足:存在正常数,使得对任意,都有,则 (1)是上的有界变差函数,且; (2)是上的绝对连续函数。证明:(1)由题设,任取的一个分割则,所以,是上的有界变差函数,且。(2)在内,任取有限个互不相交的开区间,。由于,于是,对任意,取,则当时,有,即是上的绝对连续函数。19、若是上的绝对连续函数,则是上的有界变差函数。证明:由是上的绝对连续函数,取,存在,对任意有限个互不相交的开区间,只要时,有。现将等分,记分点为,使得每一等份的长度小于。易得,即是上的有界变差函数。又,所以,即是上的有界变差函数。20、若是上的有界变差函数,则(1)全变差函数是上的递增函数;(2)也是上的递增函数。证明:(1)对任意,注意到,有,即是上的递增函数。(2)对任意,注意到,有 ,即是上的递增函数。21
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年电子脉冲治疗仪项目合作计划书
- 2025年中国家用电器五金冲压件市场调查研究报告
- 2025年中国套装茶具市场调查研究报告
- 2025年中国双面胶纸粘贴机市场调查研究报告
- 2025年中国冷热电吹风市场调查研究报告
- 2025年中国二套色印花布市场调查研究报告
- 2025窗帘购销合同
- 《2025年度照明设施维修保养合同》
- 2025年实验室仪器装置项目建议书
- 《高级审计操作指南》课件
- GA 1812.2-2024银行系统反恐怖防范要求第2部分:数据中心
- 2025至2030中国智慧消防行业发展状况及未来前景研究报告
- 联锁系统设备调试施工作业指导书
- 热网工程施工组织设计方案
- 2025年上半年黑龙江牡丹江市“市委书记进校园”活动暨“雪城优才”企事业单位人才招聘1324人重点基础提升(共500题)附带答案详解
- 2025年重庆市中考物理模拟试卷(一)(含解析)
- 髌骨骨折的中医护理查房
- 希尔顿管理制度
- 2022继电保护微机型试验装置技术条件
- 2025年浙江宁波交通工程建设集团有限公司招聘笔试参考题库含答案解析
- 消毒供应中心管理制度
评论
0/150
提交评论