




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、精选优质文档-倾情为你奉上1、已知一物体作自由落体运动,对其高度进行了20次测量,测量值如下表: 时间s1234567高度km1.99451.97941.95541.92141.87771.82501.7598时间s891011121314高度km1.68671.60361.50921.40761.29441.17241.0399时间s151617181920高度km0.89800.74550.58500.41250.23180.0399设高度的测量误差是均值为0、方差为1的高斯白噪声随机序列,该物体的初始高度和速度也是高斯分布的随机变量,且。试求该物体高度和速度随时间变化的最优估计。()解:
2、选取系统的状态变量为,为物体在k时刻的高度,为物体在k时刻的瞬时速度。这里不考虑过程噪声的存在。由牛顿第二运动定律可以写出系统的状态方程:(由采样周T=1s,根据离散化的方法得离散的状态方程) 其中 ,建立如下的测量方程:其中。应用卡尔曼滤波算法可以得到物体的高度和速度随时间变化的最优估计,卡尔曼滤波算法为:一步预测:预测方差:滤波增益:滤波计算:P滤波方差:由题设,滤波初始值为:= 测量误差为:EV(k+1)=0 , Var V(k+1)=1采用MATLAB软件进行计算,程序清单为:A=1 -1;0 1;B=-1/2;1;C=1 0;U=9.80; R=1;h1=1994.5 1979.4
3、1955.4 1921.4 1877.7 1825.0 1759.8 1686.7 1603.6 1509.2 1407.6 1294.4 1172.4 1039.9 898 745.5 585 412.5 231.8 39.9;x=1900 10'p=100 0;0 2;t=1:20;he=zeros(1,length(t);for i=1:20 x=A*x+B*U; %一步预测 p=A*p*A' %一步预测误差方差矩阵 k=p*C'*inv(R+C*p*C'); %滤波增益 x=x+k*(h1(i)-C*x); %滤波值 h2(i)=x(1,:); %保存高
4、度滤波值 v(i)=x(2,:); %保存速度滤波值 p=(eye(2)-k*C)*p; %滤波方差 P1(i)=p(1,1) P2(i)=p(2,2)endfigure(1),plot(t,h1','r',t,h2','*');legend('滤波曲线','测量曲线')title('滤波曲线和测量曲线')figure(2),plot(t,v');legend('速度曲线')title('速度曲线')figure(3) plot(P1,'r')
5、;legend('高度方差')title('高度方差')figure(4) plot(P2,'r')legend('速度方差')title('速度方差')运行程序,得到的物体高度和速度随时间变化的最优估计如下表所示:时间s测量高度m高度的最优估计m速度的最优估计m/s11994.51993.417.67621979.41977.323.23831955.41953.730.5541921.41920.339.551877.7187748.96461825.01824.158.571759.81760.368.391
6、81686.71686.978.21491603.61603.788.024101509.21510.297.909111407.61407.5107.7121294.41294.7117.52131172.41172.3127.32141039.91040.1137.1215898.0898.03146.9216745.5746.05156.7417585.0584.54166.5318412.5412.98176.3419231.8231.76186.142039.940.566195.95上表为物体随时间变化的高度量测值和高度,速度的最优估计值按此计算结果绘制的曲线图如下:结果分析:此题
7、中我们利用初值和P(0)根据卡尔曼滤波算法递推的求出了物体的高度和速度的最优估计,从物体的高度的最优估计曲线中我们可以看到,物体的高度最优估计值和实际测量值几乎相等,物体的速度的最优估计也和自由落体的速度几乎一致,只是在初始滤波时有一定的的偏差,这是由于滤波初值选取决定的。在许多实际问题中,往往不能精确知道初值。很显然此时计算得到的滤波值将不是最优的。根据相应的判定准则,我们知道该系统是一致完全能和一直完全能观的。即它的最优线性最优滤波系统是一直渐近稳定的,所以滤波初值选取只影响滤波的初始阶段,系统的滤波最终会趋向稳定。这是有系统自身的特性决定的。因此初值任意选取并不会影响滤波的最后阶段的结果
8、。显然,上述结果是在测量误差矩阵R精确可知的情况下得到的。如果R不精确,那么由上述算法给出的将不是X(k)的最优估计。并且此时,滤波还可能发散。这时我们可以采用噪声不精确(未知)系统的自适应滤波:可以先选取一个适当的量测噪声矩阵并将它固定下来,然后按照动态噪音不精确的情况设计自适应滤波。本题中假设测量误差为均值为0,方差为1的高斯白色噪声随机序列,并且初始高度和速度相互独立。显然这种假设是比较理想的状况。如果测量误差为有色噪声,此时我们可以通过适当的变换把系统方程中的有色噪声转变成白色噪声的情形处理,从而得到一个白色噪声作用下的离散线性系统,有此系统的滤波算法导出原系统的滤波算法。由上图可以看
9、出,速度的滤波方差在最初的时间内很大(接近于2),高度滤波方差在初始时更大(接近于100),但是很快速度滤波方差就收敛到0;而高度的滤波方差收敛速度比速度滤波方差的要慢,但是最终也收敛到了某个稳态值。改变参数看影响:将滤波初值、初值方差、测量噪声方差分别变化,其相应滤波方差如图所示:综上所示,滤波初值的改变对滤波方差影响不大(其实这一点在卡尔曼滤波算法中也可看出),而改变初值方差、测量噪声方差对滤波方差有较大的影响。初值方差和测量噪声方差的增加都会使高度方差和速度方差变大,且收敛速度变慢;相应地,他们的减少也都会使高度方差和速度方差变小,收敛速度变快。从统计学的角度讲,方差代表数据的精度,方差
10、大则数据偏离真值副度就大,数据本身的可靠性就差,数据所带来的信息就小,所带来的误差就大(根据误差理论的误差可传递性)。2、同样考虑自由落体运动的物体,用雷达(和物体落地点在同一水平面)进行测量,如图所示。如果,且雷达测距和测角的测量噪声是高斯白噪声随机序列,均值为零、方差阵,试根据下列测量数据确定物体的高度和速度随时间变化的估计值。时间s*1000斜距km俯仰角rad*1000 0.000 2.891 0.876 0.000 2.771 0.478 0.000 2.236 0.639 0.000 2.901 0.802 0.000 2.244 0.452 0.000 2.089 0.819 0
11、.000 2.039 0.213 0.000 2.313 0.379 0.000 2.551 0.545 0.000 2.195 0.034 0.000 2.812 0.986 0.000 2.312 0.530 0.000 2.473 0.495 0.000 2.220 0.639 0.000 2.333 0.069 0.000 2.357 0.706 0.000 2.785 0.081 0.000 2.843 0.971 0.000 2.797 0.368 0.000 2.246 0.588 0.000 2.386 0.452 0.000 2.982 0.978 0.000 2.088 0
12、.025 0.000 2.696 0.544 0.000 2.332 0.781 0.000 2.137 0.328 0.000 2.453 0.348 0.000 2.401 0.918 0.000 2.535 0.708 0.000 2.466 0.281 0.000 2.271 0.972 0.000 2.706 0.986 0.000 2.727 0.142 0.000 2.195 0.262 0.000 2.767 0.980 0.000 2.031 0.579 0.000 2.357 0.465 0.000 2.579 0.160 0.000 2.395 -0.964 0.000
13、2.913 0.068雷达物体Vhd0斜距俯仰角图2示意图解:选取系统的状态变量为,其中为雷达距离目标的水平距离,在物体的自由下落过程中可以认为是常值,为物体在k时刻的高度,为物体在k时刻的速度。这里不考虑过程噪声的存在。由牛顿第二运动定律可以建立系统的状态方程为:(由采样周T=0.5s,根据离散化的方法得离散的状态方程) 其中 , ,测量方程如下:设hX(k),k=H(k)= 应用扩展卡尔曼滤波算法可以得到物体的高度和速度随时间变化的最优估计,扩展卡尔曼滤波算法为:一步预测:预测方差:滤波增益:滤波计算:滤波方差:由题设,滤波初始值为: 测量误差为:EV(k+1)=0 , 方差采用MATLA
14、B软件进行计算,程序清单为:A=1 0 0;0 1 -0.5;0 0 1;B=0;-0.125;0.5;U=9.80; R=0.04 0;0 0.01;C=1000* 2.891 0.876; 2.771 0.478; 2.236 0.639; 2.901 0.802; 2.244 0.452; 2.089 0.819; 2.039 0.213; 2.313 0.379; 2.551 0.545; 2.195 0.034; 2.812 0.986; 2.312 0.530; 2.473 0.495; 2.220 0.639; 2.333 0.069; 2.357 0.706; 2.785 0.
15、081; 2.843 0.971; 2.797 0.368; 2.246 0.588; 2.386 0.452; 2.982 0.978; 2.088 0.025; 2.696 0.544; 2.332 0.781; 2.137 0.328; 2.453 0.348; 2.401 0.918; 2.535 0.708; 2.466 0.281; 2.271 0.972; 2.706 0.986; 2.727 0.142; 2.195 0.262; 2.767 0.980; 2.031 0.579; 2.357 0.465; 2.579 0.160; 2.395 -0.964; 2.913 0.
16、068; %输入测量数据x=1995 2005 1'p=5 0 0;0 5 0;0 0 2;t=0.5:0.5:20;h=zeros(1,length(t);v=zeros(1,length(t);for i=1:length(t)hh(i)=C(i,1)*sin(C(i,2);endfor i=1:length(t) x=A*x+B*U; %一步预测 p=A*p*A' %一步预测误差方差矩阵H=x(1,1)/sqrt(x(1,1)2+x(2,1)2),x(2,1)/sqrt(x(1,1)2+x(2,1)2),0; -x(2,1)/(x(1,1)2+x(2,1)2),x(1,1
17、)/(x(1,1)2+x(2,1)2),0 k=p*H'*inv(R+H*p*H'); %滤波增益 x=x+k*(C(i,:)'-sqrt(x(1,1)2+x(2,1)2);atan(x(2,1)/x(1,1); %滤波值 h(i)=x(2,:); %保存高度滤波值 v(i)=x(3,:); %保存速度滤波值 p=(eye(3)-k*H)*p; %滤波方差 p1(i)=p(1,1); p2(i)=p(2,2); p3(i)=p(3,3);endfigure(1)plot(t,h,'r');title('滤波曲线')figure(2),pl
18、ot(t,hh, 'b');title('高度测量曲线')figure(3),plot(t,v');title('速度滤波曲线')figure(4),plot(t,p2');title('高度方差曲线')figure(5),plot(t,p3');title('速度方差曲线')disp(h)disp(v)运行程序,得到的物体高度和速度随时间变化的最优估计如下表所示:时间s高度的最优估计km速度的最优估计m/s0.0002.00345.87350.0002.00059.23080.0001.9
19、94214.53130.0001.985819.31810.0001.974524.46420.0001.960929.44280.0001.945234.20750.0001.926739.20850.0001.905944.07740.0001.882748.94110.0001.857053.86490.0001.828858.74180.0001.798063.60800.0001.765168.51780.0001.729473.40170.0001.691278.29440.0001.650583.18990.0001.607988.09120.0001.562592.99180.
20、0001.513497.90460.0001.4639102.79650.0001.4103107.71270.0001.3549112.61690.0001.2965117.53550.0001.2365122.43640.0001.1740127.33630.0001.1086132.24990.0001.0407137.16490.0000.9709142.06370.0000.8981146.98170.0000.8228151.89680.0000.7458156.79270.0000.6660161.69810.0000.5843166.58550.0000.4996171.49050.0000.4125176.39560
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 信利体系相关知识培训课件
- 2025年临床疾病护理常规题库及答案
- 2025年护理学高级教材题库及答案
- 2025年23辽宁护理专升本题库及答案
- 8.4 常见的盐说课稿初中化学科粤版2012九年级下册-科粤版2012
- d声母课件教学课件
- 第一节 东北地区说课稿初中地理粤人版八年级下册-粤人版2012
- 三年级信息技术下册 古诗配画说课稿 冀教版
- 第二单元 华夏之声 文化根脉- 月儿弯弯照九州 教学设计 - 湘艺版(2024)初中音乐七年级上册
- 2025年护理文献检索题库及答案
- T-CTSS 3-2024 茶艺职业技能竞赛技术规程
- 品管圈PDCA案例-普外科提高甲状腺手术患者功能锻炼合格率
- 2022-2024年营养指导员考试真题及答案合集
- 《电工基础(第2版)》中职全套教学课件
- 2024-2025学年江苏省南通市海安市高二(上)月考物理试卷(10月份)(含答案)
- ISO9001-2015质量管理体系内审培训课件
- 初中物理晋升高级(一级)职称水平考试模拟试卷有答案解析共三套
- CJT 340-2016 绿化种植土壤
- 《无线电失效程序》课件
- 泸州市专业技术人员年度考核登记表
- 造白渣原则及渣况判断
评论
0/150
提交评论