论加权回归与建模_农林学论文_第1页
论加权回归与建模_农林学论文_第2页
论加权回归与建模_农林学论文_第3页
论加权回归与建模_农林学论文_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、论加权回归与建模_农林学论文              摘要:以加权回归估计方法为核心,对林业上常用模型的异方差性进行了研究,提出了能彻底消除异方差的最佳权函数。并对模型的评价指标进行了探讨,提出了评价通用性回归模型的3大指标,并分析了加权回归估计与这些评价指标之间的关系。最后对样本资料的收集进行了讨论,提出了收集建模样本应遵循的基本原则。 关键词:加权回归 建模 异方差 模型评价 林业数表模型是森林经营决策必不可少的计量、预测、评价依据,保证模型质量至关重要,而样本组织、模

2、型拟合方法和模型评价是保证质量的3个重要环节。实践证明,林业数表模型所描述的问题普遍存在异方差性,在模型拟合中若不采取消除异方差影响的有效方法,必然导致模型有偏。为此,一般可采取加权最小二乘法拟合模型,但在权函数的选择上尚存在两个有待进一步解决的问题:一是权函数的形式因模型所描述的事物的性质不同而异,确定最佳权函数十分繁琐;二是到目前为止,尚未找出能完全消除异方差的权函数。本文旨在提出一种可以完全消除异方差影响的权函数通式,并给出正确评价模型的指标体系及组织建模样本的基本原则。1加权回归的概念确定变量之间的回归关系,一般情况下是利用普通最小二乘法。假设随机变量y,其中,E(y)=f(x)。也就

3、是说,随机变量y与x满足下列模型:y=f(x)+(1)式中的有3个基本假定,即“独立、正态、等方差”,它们是采用普通最小二乘法建立回归模型的先决条件。3个条件中的“独立”与“正态”在一般情况下都是基本满足的,而“等方差”这一条件,则在很多情况下都难以满足。为解决误差项的异方差性问题,应设法校正原有的模型,使校正后的模型其误差项具有常数方差,而模型的校正取决于方差2i与自变量xi之间的关系。假设i的方差与xi的函数g(xi)呈比例关系,即:2i=g(xi)2(2)这里2是一个有限常数。于是用去除原有模型,可使新模型的误差项具有常数方差。用这种方法估计模型中相应的参数,叫做加权最小二乘法(俞大刚,

4、1987)。2权函 (此 资 料 转 贴 于 ) 数的选择2.1异方差性的基本概念根据回归估计理论,当建立的回归模型的误差项存在异方差时,必须采用加权最小二乘法来消除异方差对参数估计的影响。在林业上所涉及的许多数学模型,如材积模型、生物量模型、生长率模型、削度模型等,其误差项的方差都不为常数,而是随解释变量的变化而变化(骆期邦等,1992;曾伟生等,1992;曾伟生,1996)。一般而言,模型预估值随解释变量的增大而增大时,其误差项的方差也随解释变量的增大而增大,如材积模型和生物量模型;模型预估值随解释变量的增大而减小时,其误差项方差也随解释变量的增大而减小,如生长率模型。在残差图上反映出来,

5、二者都为喇叭型。另外,预估变量的变化范围愈大,异方差性一般也愈明显。因此,采用适当形式缩小预估变量的变动幅度,可在一定程度上消除异方差性。如将材积转化为形数来建模,可将预估变量的取值大致控制在0.350.65的范围,使预估值的最大相差倍数从数千倍缩小至2倍以内,从而基本上消除了异方差性。将生长量转化为生长率再建模,也在很大程度上缩小了预估值的变动幅度,可明显削弱其异方差性。2.2权函数选择的研究现状上面提到的一些常用模型,由于存在异方差,因此必须选用适当的权函数来进行加权回归估计。关于这一点,近几年已经逐步有了认识。如对材积模型V=aDbHc的估计,一般认为选用权函数W=1/(D4H2)可有效

6、地消除异方差的影响(骆期邦等,1992);对生长率模型PV=aDbAc的估计,取权函数W=1/(D2A)效果较佳(曾伟生等,1992)。而且,还认识到了最合适的权函数是针对某一个模型而不是某一类模型(曾伟生,1992)。但是,针对一个具体的回归模型,如何确定其最合适权函数的问题仍然没有得到圆满解决。 一般情况下,如果不具有异方差性形式的信息,可通过对剩余值ei=g(xi)进行试验,以挑选出一种合适的拟合形式(俞大刚,1987)。另外,也有人提出直接寻找方差S2ei与自变量xi的关系式S2ei=g(xi),再以W=1/g(xi)为权函数进行加权回归,新模型的误差项方差S2ei就会近似为常数1。还

7、进一步提出了较具通用性的抛物线形式的权函数,并取得了较好的效果(曾伟生,1996)。但是这样来确定权函数,一方面比较繁琐;另一方面也难保证抛物线形式能适合所有模型,尤其是含多个自变量的模型;再就是必须有比较大的建模样本才可能得到误差项方差与变量x之间的回归关系。诚然,在此基础上还可以作些改进,如:借鉴曾伟生文(曾伟生等,1997)中可变参数模型的设计,将狭义的抛物线形式y=a+bx+cx2扩展为广义的抛物线形式y=a+bxn+c(xn)2(n=0.5,1,2)以更好地适应各个模型不同程度的异方差性;从自变量集中选出最主要的变量(如材积模型中的直径)来构造权函数等。即使这样 欢迎您访问论加权回归

8、与建模_农林学论文(2) ,效果仍然不太理想。2.3最佳权函数的确定前面已经提到,最佳权函数是针对某个模型而不是某类模型,即同类模型中不同的回归方程式应有不同的最佳权函数。基于这一认识,我们再来对一些经典模型及其合适权函数作进一步分析。不难发现,认为以W=1/(D2H)2为权函数效果较好的材积模型V=aDbHc,其参数b、c的估计值分别接近于2和1;以W=1/(D2A)为权函数的生长率模型PV=aDbAc,其参数b、c的估计值分别接近于1和0.5。最近笔者还发现,形如W=a(D2H)b的生物量模型,取W=1/(D2H)2为权函数效果也很佳,此时b的估计值接近于1。如果定义W=1/g(x)2为权

9、函数,因为上述模型中的参数估计值与权函数中的相应参数值接近,故模型两边同时除以g(x)时,右边都近似等于参数a;若权函数中的相应参数取模型的参数估计值,则模型两边同除g(x)时右边就会恒等于参数a了。更进一步,若取:W=1/f(x)2(3)作为权函数,则模型两边同除以f(x)后得到的新模型,右边都等于1。可以证明,此时得到的新模型,其误差项的期望值为0,方差为常数。亦即,以模型本身构造的权函数就是要寻找的最佳权函数。这刚好应证了“不同模型有不同的最佳权函数”的观点。该模型为:y=f(x)+(4)两边同时除以f(x)得新模型:y=y/f(x)=1+/f(x)=1+(5)对新模型(5)采用普通最小

10、二乘法进行估计(相当于原有模型(4)的加权回归估计),有:(6)下面讨论新模型误差项的性质。期望值:E()=E/f(x)=Ey/f(x)-1由(6)式知,Ey/f(x)=1,故E()=0。方差:式中f(ei)为频数(董德元等,1987)。可用建模样本对上述方差D() 作出如下无偏估计:因此,新模型? 欢迎您访问论加权回归与建模_农林学论文(3) 蟛钕畹?/p>                               期望值为0,其方差为常数,即对所有xi来说,每个i的方差都相同;满足等

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论