202X版高考数学总复习第三章导数及其应用第2节导数在研究函数中的应用(第1课时)导数与函数的单调性课件文北师大版_第1页
202X版高考数学总复习第三章导数及其应用第2节导数在研究函数中的应用(第1课时)导数与函数的单调性课件文北师大版_第2页
202X版高考数学总复习第三章导数及其应用第2节导数在研究函数中的应用(第1课时)导数与函数的单调性课件文北师大版_第3页
202X版高考数学总复习第三章导数及其应用第2节导数在研究函数中的应用(第1课时)导数与函数的单调性课件文北师大版_第4页
202X版高考数学总复习第三章导数及其应用第2节导数在研究函数中的应用(第1课时)导数与函数的单调性课件文北师大版_第5页
已阅读5页,还剩26页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、第第2节导数在研究函数中的应用节导数在研究函数中的应用最新考纲1.了解函数的单调性与导数的关系;能利用导数研究函数的单调性,会求函数的单调区间(其中多项式函数不超过三次);2.了解函数在某点取得极值的必要条件和充分条件;会用导数求函数的极大值、极小值(其中多项式函数不超过三次);会求闭区间上函数的最大值、最小值(其中多项式函数不超过三次);3.利用导数研究函数的单调性、极(最)值,并会解决与之有关的方程(不等式)问题;4.会利用导数解决某些简单的实际问题.知 识 梳 理1.函数的单调性与导数的关系已知函数f(x)在某个区间内可导,(1)若f(x)0,则函数f(x)在这个区间内_;(2)若f(x

2、)大小大小3.函数的最值与导数(1)函数f(x)在a,b上有最值的条件如果在区间a,b上函数yf(x)的图像是一条_的曲线,那么它必有最大值和最小值.(2)求yf(x)在a,b上的最大(小)值的步骤求函数yf(x)在(a,b)内的_;将函数yf(x)的各极值与端点处的函数值f(a),f(b)比较,其中_的一个是最大值,_的一个是最小值.连续不断极值最大最小微点提醒1.函数f(x)在区间(a,b)上递增,则f(x)0,“f(x)0在(a,b)上成立”是“f(x)在(a,b)上单调递增”的充分不必要条件.2.对于可导函数f(x),“f(x0)0”是“函数f(x)在xx0处有极值”的必要不充分条件.

3、3.求最值时,应注意极值点和所给区间的关系,关系不确定时,需要分类讨论,不可想当然认为极值就是最值.4.函数最值是“整体”概念,而函数极值是“局部”概念,极大值与极小值之间没有必然的大小关系.基 础 自 测1.判断下列结论正误(在括号内打“”或“”)(1)若函数f(x)在(a,b)内单调递增,那么一定有f(x)0.()(2)如果函数f(x)在某个区间内恒有f(x)0,则f(x)在此区间内没有单调性.()(3)函数的极大值一定大于其极小值.()(4)对可导函数f(x),f(x0)0是x0为极值点的充要条件.()(5)函数的最大值不一定是极大值,函数的最小值也不一定是极小值.()解析(1)f(x)

4、在(a,b)内单调递增,则有f(x)0.(3)函数的极大值也可能小于极小值.(4)x0为f(x)的极值点的充要条件是f(x0)0,且x0两侧导函数异号.答案(1)(2)(3)(4)(5)2.(选修11P85抽象概括引申改编)如图是f(x)的导函数f(x)的图像,则f(x)的极小值点的个数为()A.1 B.2 C.3 D.4解析由题意知在x1处f(1)0,且其两侧导数符号为左负右正.答案Ax2为f(x)的极小值点答案D4.(2019九江月考)函数f(x)cos xx在(0,)上的单调性是()A.先增后减 B.先减后增C.单调递增 D.单调递减解析易知f(x)sin x1,x(0,),则f(x)0

5、,所以f(x)cos xx在(0,)上递减.答案D5.(2017浙江卷)函数yf(x)的导函数yf(x)的图像如图所示,则函数yf(x)的图像可能是()解析设导函数yf(x)与x轴交点的横坐标从左往右依次为x1,x2,x3,由导函数yf(x)的图像易得当x(,x1)(x2,x3)时,f(x)0(其中x10 x2x3),所以函数f(x)在(,x1),(x2,x3)上单调递减,在(x1,x2),(x3,)上单调递增,观察各选项,只有D选项符合.答案D6.(2018豫南九校考评)若函数f(x)x(xc)2在x2处有极小值,则常数c的值为()A.4 B.2或6C.2 D.6解析函数f(x)x(xc)2

6、的导数为f(x)3x24cxc2,由题意知,在x2处的导数值为128cc20,解得c2或6,又函数f(x)x(xc)2在x2处有极小值,故导数在x2处左侧为负,右侧为正,而当c6时,f(x)x(x6)2在x2处有极大值,故c2.答案C考点一求函数的单调区间(1)确定a的值;(2)若g(x)f(x)ex,求函数g(x)的单调减区间.第第1课时导数与函数的单调性课时导数与函数的单调性解(1)对f(x)求导得f(x)3ax22x,令g(x)0,即x(x1)(x4)0,解得1x0或x0,得单调递增区间;(4)在定义域内解不等式f(x)0,得单调递减区间.2.若所求函数的单调区间不止一个时,用“,”与“

7、和”连接.【训练1】 (1)已知函数f(x)xln x,则f(x) ()(2)已知定义在区间(,)上的函数f(x)xsin xcos x,则f(x)的单调递增区间为_.考点二讨论函数的单调性【例2】 (2017全国卷改编)已知函数f(x)ex(exa)a2x,其中参数a0.(1)讨论f(x)的单调性;(2)若f(x)0,求a的取值范围.解(1)函数f(x)的定义域为(,),且a0.f(x)2e2xaexa2(2exa)(exa).若a0,则f(x)e2x,在(,)上单调递增.(2)当a0时,f(x)e2x0恒成立.若a0,知F(x)1.即实数a的取值范围是(1,).(2)由h(x)在1,4上单

8、调递减,当且仅当x4时等号成立.h(x)在1,4上为减函数.规律方法1.利用导数比较大小,其关键在于利用题目条件构造辅助函数,把比较大小的问题转化为先利用导数研究函数的单调性,进而根据单调性比较大小.2.根据函数单调性求参数的一般思路(1)利用集合间的包含关系处理:yf(x)在(a,b)上单调,则区间(a,b)是相应单调区间的子集.(2)f(x)是单调递增的充要条件是对任意的x(a,b)都有f(x)0且在(a,b)内的任一非空子区间上,f(x)不恒为零,应注意此时式子中的等号不能省略,否则漏解.(3)函数在某个区间存在单调区间可转化为不等式有解问题.【训练3】 (1)已知f(x)是定义在区间(0,)内的函数,其导函数为f(x),且不等式xf(x)2f(x)恒成立,则()A.4f(1)f(2)C.f(1)4f(2)(2)(2019西安月考)若函数f(x)kxln x在区间(2,)上单调递增,则k的取值范围是()所以函数g(x)在(0,)内为减函数,答案(1)B(2)B思维升华1.已

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论