SPSS对主成分回归实验报告_第1页
SPSS对主成分回归实验报告_第2页
SPSS对主成分回归实验报告_第3页
SPSS对主成分回归实验报告_第4页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、多元统计分析分析实验报告2012年月日学院经贸学院姓名学号实验实验成绩名称一、实验目的(一)利用SPSS对主成分回归进行计算机实现.(二)要求熟练软件操作步骤,重点掌握对软件处理结果的解释.二、实验内容以教材例题7.2 为实验对象,应用软件对例题进行操作练习,以掌握多元统计分析方法的应用三、实验步骤 (以文字列出软件操作过程并附上操作截图)1、数据文件的输入或建立:( 文件名以学号或姓名命名)将表 7.2 数据输入spss :点击“文件”下“新建”“数据”见图1:图 1点击左下角“变量视图”首先定义变量名称及类型:见图2:图 2:然后点击“数据视图”进行数据输入(图3):图 3完成数据输入2、

2、具体操作分析过程:( 1)首先做因变量 Y 与自变量 X1-X3 的普通线性回归:在变量视图下点击“分析”菜单,选择“回归”- “线性”(图 4):图 4将因变量Y调入“因变量”栏,将x1-x3 调入“自变量”栏(图5):然后选择相关要输出的结果:点击右上角 “统计量 (s)”:“回归系数” 下选择 “估计”;“残差” 下选择 “ D.W”;在右上角选择输出“模型拟合度”、“部分相关和偏相关”“共线性诊断” (后两项是做多重共线性检验)。选完后点击“继续” (见图 6)如果需要对因变量与残差进行图形分析则需要在“绘制”下选择相关项目(图7),一般不需要则继续如果需要将相关结果如因变量预测值、残

3、差等保存则点击“保存”(图8),选择要保存的项目如果是逐步回归法或者设置不带常数项的回归模型则点击“选项”(图 9)其他选项按软件默认。最后点击“确定”,运行线性回归,输出相关结果(见表1-3 )图 5图 6图 7图 8图 9回归分析输出结果:表1模型汇总b模型标准估计的误RR 方调整R方差Durbin-Watson1.996 a.992.988.488872.740a.预测变量: (常量 ), x3, x2, x1。b.因变量: y表2Anovab模型平方和df均方FSig.1回归204.776368.259285.610.000 a残差1.6737.239总计206.44910a.预测变量

4、 : (常量 ), x3, x2, x1。b. 因变量 : y表3系数 a模型非标准化系数标准系数相关性共线B标准误差试用版tSig.零阶偏部分容差1(常量)-10.1281.212-8.355.000x1-.051.070-.339-.731.488.965-.266-.025.0x2.587.095.2136.203.000.251.920.211.9x3.287.1021.3032.807.026.972.728.095.0a. 因变量 : y由表可知,回归模型拟合优度达到99.2%,方差分析也显示线性回归方程整体显著(F=285.61,Sig.=0.000 )但是回归系数估计结果中,x

5、1的系数为 -0.051 与一般经济理论矛盾且不显著(t 检验值 -0.731 ,检验的 p值 0.488 ),经多重共线性诊断( x1与 x3的VIF值高达 180以上)表明自变量存在共线性。运用主成分分析做多重共线性处理:(2)自变量 x1-x3 的主成分分析:由于 spss 没有独立的主成分分析模块,需要在因子分析里完成,因此需要特别注意:在数据窗口下选择“分析”“降维”“因子分析”(见图10);在弹出的窗口中将 x1-x3 调入“变量”(见图 11);然后点击“描述”,选择要输出的统计量(见图12):选中“统计量”下的两个项目(输出变量描述统计和初始分析结果) ;在“相关矩阵” 一般要

6、选择输出 “系数”、“显著性水平” 、“KMO”(做主成分分析和因子分析的适用性检验,也就是检验变量之间的相关系数是否足够大可以做因子分析)选完后点击“继续”进行下一步;点击“抽取”(见图 13):在“方法”下默认“主成分”;“分析”下,默认“相关性矩阵”(含义是要对变量做标准化处理,然后基于标准化后的协差阵也就是相关阵进行分解做因子分析或主成分分析),如果不需要对变量做标准化处理就选“协方差矩阵”;“输出”中的两项都选,要求输出没有旋转的因子解(主成分分析必选项)和碎石图(用图形决定提取的主成分或因子的个数);“抽取“下,默认的是基于特征值(大于1表示提取的因子或主成分至少代表1个单位标准差

7、的变量信息,因为标准化后的变量方差为1,因子或者主成分作为提取的综合变量应该至少代表1个变量的信息),也可以自选提取的因子个数(即第二项),本例中做主成分回归,选择提取全部可能的3个主成分,所以自选个数填3。选完后点击 “继续”进行下一步;点击“旋转”(图14),按默认的“方法”下不旋转(注意,主成分分析不能旋转!)其他不用选,点击“继续”进行下一步;点击“得分”,计算不旋转的初始因子得分(图 15),选中“保存为变量”,“方法”下按默认,其他不修改,点击“继续”进行下一步。“选项”下可以不选按默认(选项里主要针对缺失值和系数显示格式,不影响分析结果)最后点击“确定”,运行因子分析。图10图1

8、1图 12图 13图 14图 15由运行结果计算主成分:表 4、描述统计量均值标准差分析 Nx1194.590929.9995211x23.30001.6492411x3139.736420.6344011表 5、相关矩阵x1x2x3相关x11.000.026.997x2.0261.000.036x3.997.0361.000Sig. (单侧)x1.470.000x2.470.459x3.000.459表 6、 KMO和 Bartlett的检验取样足够度的 Kaiser-Meyer-Olkin度量。.492Bartlett 的球形度检验近似卡方42.687df3Sig.000表7、解释的总方差

9、成份初始特征值提取平方和载入合计方差的 %累积 %合计方差的 %累积 %11.99966.63866.6381.99966.63866.6382.99833.27299.910.99833.27299.9103.003.090100.000.003.090100.000提取方法:主成份分析。表8、成份矩阵 a成份123x1.999-.036.037x2.062.998.000x3.999-.026-.037提取方法 : 主成份。a.已提取了 3个成份。由表 5、6可知适合做主成分或因子分析( KMO检验通过),表 7知前两个主成分(初始因子)贡献率已达 99.91%,提取前两个主成分用于分析。

10、由表 8(初始因子载荷阵)和表 7可计算前两个特征向量,用表 8前两列分别除以前两个特征值的平方根得前两个主成分表达式:F1=0.7066X1*+0.0439X2*+0.7066X3* (式 1)F2=-0.0360X1*+0.9990X2*-0.0260X3* (式 2)其中 X1*-X3* 表示为标准化变量(这是因为在进行主成分分析时是以标准化变量进行分析的,是从相关阵出发分析的,见图13的选项)。由于主成分互不相关,可以用提取的主成分代替自变量进行回归分析,因此需要计算主成分得分来代替自变量 X1-X3。主成分的计算:依据式1和2中两个主成分的表达式,对各自变量标准化后带入就可以计算出每

11、个样品的主成分得分。但是在spss 中,由因子分析提取时是用主成分法提取的,根据初始因子与主成分的关系,未旋转的初始因子等于主成分除以特征根的平方根,因此主成分得分等于因子得分乘以特征根的平方根,因此可以由因子得分计算主成分得分。前面在因子分析选项中保存了因子得分(见图15),因此计算两个主成分得分:点击“转换”“计算变量”( 图 16) :在弹出的窗口分别定义主成分F1=第一因子得分 * 第一特征根的平方根(图17)和 F2=第二因子得分 * 第二特征根的平方根。(3)主成分回归过程:要做主成分回归,需要用标准化的因变量(因为自变量经过标准化处理做主成分分析,因变量需要对应做标准化)与主成分

12、做回归,对因变量 Y做标准化处理,点击“分析”“描述统计”“描述”(见图 18),在弹出窗口中将 Y调入变量,并选中“将标准化得分另存为变量”(图 19)后确定完成 Y的标准化。点击“分析” - “回归” - “线性”(图 20)在弹出窗口(图 21)中将 Zscore (y)调入因变量, F1和F2调入自变量,其他选项同前面图 6-9 ,然后点击“确定”运行主成分回归,相关输出结果见表 9图 16图17图18图 19图 20图 21主成分回归结果:表 9、模型汇总模型RR 方调整R方标准估计的误差1.994 a.988.985.12104901表9、模型汇总标准 估计的误模型RR 方调整R方

13、差1.994 a.988.985.12104901表10、Anovab模型平方和df均方FSig.1回归9.88324.941337.230.000 a残差.1178.015总计10.00010表11、系数 a非标准化系数标准系数共线性统计量模型B标准 误差试用版tSig.容差VIF1(常量)-3.043E-16.036.0001.000F2.191.038.1914.993.0011.0001.000F1.690.027.97625.486.0001.0001.000a.预测变量 : (常量 ), F1, F2 。表10、Anovab模型平方和df均方FSig.1回归9.88324.9413

14、37.230.000 a残差.1178.015总计10.00010a. 预测变量 : ( 常量 ), F1, F2 。b. 因变量 : Zscore(y)表11、系数 a非标准化系数标准系数共线性统计量模型B标准误差试用版tSig.容差VIF1(常量)-3.043E-16.036.0001.000F2.191.038.1914.993.0011.0001.000F1.690.027.97625.486.0001.0001.000a.因变量 : Zscore(y)由表 9-11 可知,标准化 Y对两个主成分的线性回归通过显著性检验,也没有多重共线性,回归系数合理,即 Y*=0.690F1+0.191F

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论