




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、【精品文档】如有侵权,请联系网站删除,仅供学习与交流电大专科2332高等数学基础复习及答案.精品文档.电大专科2332高等数学基础复习及答案2332高等数学期末复习指导 高等数学基础复习指导 注意: 1 本次考试题型分为单选(20=4分*5)填空(20=4分*5)计算题(44=11分*4)应用题(16=16分*1) 2 复习指导分为3个部分,第一部分配有详细解答,掌握解题方法,第二部分历年试题汇编,熟悉考试题型;第三部分中央电大今年的模拟真题,应该重点掌握。 3 复印的蓝皮书大家要掌握第5页的样卷和29页的综合练习。 第一部分(详细解答) 一(填空题 x,41(函数的定义域为 xx,12且 。
2、 y,ln(1)x,x,,40,x4,x,10解:且,xx12 x,1,ln10x,,x,11,ln(1)x,2(函数的定义域是 。 ,12xy,24,xx,,10x,1, 解:,12x,2,22x40,x,x,23(函数的定义域是 。 xx,23且y,x,3xx,,202, 解:,xx,303,22f(x),4(设,则 。 xx,,46fxx(2)2,,2xt,,2xt,2解:设,则且原式 fxx(2)2,,22ftt()22,即, tt,,42,2fx(),亦即 xx,,424,x,4(1),0,xxfx(),x,0k4(若函数在处连续,则= e 。 ,kx,0,第 1 页 共 19 页
3、2332高等数学期末复习指导 函数fx在x=0连续,lim则ffx,0,x0,41,,,4,,4xxlimlim1limfxxxe,1, xxx,000,fk(0), ,4?,ke,xx,05(曲线在处的切线方程为 。 yx,1ye,曲线在点处的切线方程为yyyxx, yfx,xy,,0000x0,x0,解:, ye1,xye,01时,000x,0x,, yxyx,1(0)1ln(3)x,6. 函数的连续区间为 。 y,,,3,1,1,,x,1初等函数在其定义区间连续。 x,,30ln(3)x,,x,3x,1y,且 ,,,3,1,1,,,x,1x,,10,7(曲线在点(1,0)处的切线方程为
4、。 yx,lnyx,11,yx解:,ln1,,xxx,111 xyxyx?,,01111dy,fxdx'(ln2)8. 设函数yfx,(ln2)可导,则 。 x1dyydx,'解:,fxxdx'(ln2)2' fxdx(ln2)'fxxdx'(ln2)ln2',,2x11fxdx'(ln2),fxxdx'(ln2)2', ,x2x132yxxx,,239.(判断单调性、凹凸性)曲线在区间内是 单调递减且凹 。 2,3,32,解: yxxxxxy,,,4331,230当时,曲线下降,, yxy,20,4曲线是凹的22
5、,f(f(x),10(设,则 。 41x,fxx()1,,222,fxxx'()1'2,,,ffxfxxx()22141,,,,解:, ,1311( 0 。 xxdx(1cos),1第 2 页 共 19 页 2332高等数学期末复习指导 3解:是奇函数;是偶函数,由于偶+偶=偶,则是偶函数, 1cos,xx1cos和x3因为奇偶,奇,所以是奇函数,是对称区间 x,,1,11cos,x,,奇函数在对称区间上的积分为零 12212( 。 xxxdx(1),,: xxxdx(1),,,(1)xxxdx,,,xdxxxdx,,1,1111122是奇函数(奇偶,
6、奇),故; ,xxdx10,,xx1,,1111222232,而是偶函数,故 xdxxdxx2x,0,1033fx(ln3),13(设,则 。 Fxfx()(),dx,FxCln3,,x11,解: ,?,ln3ln3ln3xdxxdxdx,xx1 fxdxfxdxFxC(ln3)ln3ln3ln3,,,x122,xfxdx(1),14(已知Fxfx()(),,则 。 FxC,,1,,211122222解: xfxdxfxxdxfxdxFxC(1)12111,,,222fxxdx(sin)cos,15(设Fx()fx()为的原函数,那么 。 FxCsin,,fuduFuC,,cossinxdxd
7、x,Fx()fx()分析:为的原函数, ,,,fxxdxfxdxFxC(sin)cossinsinsin,,解: ,,sinx,sinxfx()16(设的一个原函数是, 则fx(), 。 ,sinxfx()Fx()fx()Fx'()fx(),解:的一个原函数为, sin''xcos'x,,0,xxcos2Fx(),17(,那么 。 Fxttdt()cos2,x,xx,解: ftdtfx,Fxttdtxx()cos2cos2,,0a0d,2t2,x,tedt18(_,xe_。 ,,xdx0xdd,2,t2t2,x,tedttedt解:,xe ,,0xdxdxx,1
8、,sint,F(),19(设,则 e 。 Fxedt(),02第 3 页 共 19 页 2332高等数学期末复习指导 ,x,sin,sinsin1tx2,FxedteFee,解: ,,,,02,0d2220(cos= 。 tdt,cosx,xdx0xdd222coscos解:tdt,tdt, ,cosx,x0dxdx二(选择题 1( 下列函数中( B )的图像关于坐标原点对称。 xlnxA( B( C(xxsin D( axxcos规律:(1)1(奇偶函数定义: ; fxfxfxfxfxfx,;是奇函数,是偶函数,2243(2)(常见的偶函数: xxxxx,.,cos,常数111,,xx352
9、3常见的奇函数: xxxxxxx,.,sin,ln1,ln,ln,11,,xxxxxx,常见的非奇非偶函数:; aeaex,ln(3)(奇偶函数运算性质: 奇?奇=奇;奇?偶=非;偶?偶=偶;奇×奇=偶;奇×偶=奇;偶×偶=偶; y(4)(奇函数图像关于原点对称;偶函数图像关于轴对称。 y解:A(非奇非偶; B(奇×偶=奇(原点); C(奇×奇=偶(轴); D(非奇非偶 2(下列函数中( B )不是奇函数。 xx,2sinxcosxA(; B(sin(1)x,; C(; D( ee,ln1xx,解:A(奇函数(定义); B(非奇非偶(定义);C
10、(奇函数(奇×偶);D(奇函数(定义) y3(下列函数中,其图像关于轴对称的是( A )。 1,xx2lncos(1)x,A( B( C( D( excossin(1)x,1,xy解:A(偶函数(轴); B(非奇非偶(定义);C(奇函数(常见);D(非奇非偶(定义) 4(下列极限正确的是( B )。 3xx,11e,1A( B( lim,lim0,3x,313x,,0xxsinx1x,,,elim(1)lim1C. D( x,0xxxxxe,1xlim1,x,0解:A错。?,e,1,?; lim,xx,0x,0xxB正确。分子分母最高次幂前的系数之比; 11sinxsinx,0lim
11、0C错。?,即是无穷小,即是有界变量,?; sin1x,x,x,xxx第 4 页 共 19 页 2332高等数学期末复习指导 11x,x1,,eD错。第二个重要极限应为或,其类型为。 lim(1)lim(1),,xe,x,x0x5(当x,1时,( D )为无穷小量。 x,11A( B(sin C( D( cos(1)x,ln(2)x,2x,1x,10x,1110lim解:A( ,0; lim2x,1x,1x22x,111B(x,1,x,,10,,, 不存在; limsinx,1x,x,11x,1C(,; cos(1)cos01x,,x,1D(,。 ln(2)ln10x,,6. 下列等式中,成立
12、的是( B )。 1,33xx,22xxedxde,A( B( edxde,2321C( D( dxdx,ln3 dxdx,3xx1,33xx,22xx,33xxedxde,解:A(错,正确的应为 B。 正确,即 ,2edxde,3edxde311C(错,正确的应为 D(错,正确的应为 dxdx,dxdx3ln3,3x2x,f(x)7(设在点可微,且,则下列结论成立的是( C )。 xx,fx()0,00f(x)f(x)A( 是的极小值点 B( 是的极大值点 ; xx,xx,00f(x)f(x)C(是的驻点; D( 是的最大值点; xx,xx,00,fx()fx()解:驻点定义:设在点可微,且
13、,则是的驻点。驻点为可能的极值点。 xx,fx()0,xx,000fxf()(3),fxx()ln,8(函数lim,,则 ( D )。 x,3x,311ln3A( 3 ; B( ; C( ; D( x3fxf()(3),11解一:lim, ffxx,'3'ln',xx,33x,3x,3x3x,310fxf()(3),lnln3x,1x0lim,lim解二: ,limx,3x,3x,3x,3x,313第 5 页 共 19 页 2332高等数学期末复习指导 fx()9(设,则,( B )。 fxx()sin,limx,0x12A( 0 ; B( ; C( ; D( 不存在
14、fx,sinx 解一,:limlim1xx,00xxfx,sin0x, 解二:limlimsincos1,xx,xx,00xx,00,0xx3210(曲线在区间(1,3)内是( A )。 yxxx,,391A(下降且凹 B(上升且凹 C(下降且凸 D( 上升且凸 解: 22,yxxxxxx,,369323331,,,在任取一点13,0,xyx带入可知,曲线下降 ,yx,66,,,在中任取一点13,0,xyx带入可知,曲线是凹的x11(曲线在(0,),,内是( B )。 yex,A( 下降且凹; B(上升且凹; C(下降且凸; D(上升且凸 解: xxyexe''1,,当时上升x
15、y,0'0,曲线 xye'',当时,曲线是凹的xy,0''012(曲线在点M(1,2)处的法线方程为( B )。 yx,21yx,2(1)yx,2(1)yx,22(1)A.;B.;C(D.yx,1(2) 21规律:曲线在x=处的法线方程为 xyfx,yfxxx,,000,fx,011yfxx,2解:, fxx'2',f,,'11,xxx,1yx,2(1)故法线方程为B(; 13(下列结论中正确的是( C )。 A(函数的驻点一定是极值点 B(函数的极值点一定是驻点 00C(函数一阶导数为的点一定是驻点 D(函数的极值点处导数必为
16、,fx()fx()解:驻点定义:设在点可微,且,则是的驻点。驻点为可能的极值点。 xx,fx()0,xx,000第 6 页 共 19 页 2332高等数学期末复习指导 14(设函数,则( A )。 df(x),fxx()cos,sinxsinxsinxsinxA(; B(; C(; D( dxdx,dxdx2xx2xxsinx解: dfxdxxd()coscos'si,xxxdx,n',dx,2x15(当函数不恒为0,为常数时,下列等式不成立的是( B )。 fx()ab,db,f(x)dx,f(x)A. B. (f(x)dx),f(x),adxb,C. D. df(x),f(
17、b),f(a)f(x)dx,f(x),c,a解: ,()()fxdxfx,A. 成立,为不定积分的性质; ,bB. 不成立,常数,而常数的导数为零; fxdx(),a,fxdxfxc()(),,C. 成立,为不定积分的性质; ,bD. 成立,为牛顿,莱布尼兹公式。 dfxfbfa()()(),a1116(设函数f(x)Fx()fdx(),的原函数为,则( A )。 2,xx111FC(),fC(),A( ,,FC()FxC(),; B(; C(; D( xxx11fuduFuC,,fx()Fx()解:函数的原函数为,,dxd ,,2,xx1111111,fdx(), ,fdxfd(),,FC,
18、22,xxxxxxx,17(下列无穷积分为收敛的是( B )。 ,,0,,01,x2x1edxdxA. B. C. D. edxsinxdx,1,0,2x,,0,1,发散p,0,收敛1,pxdxedx,规律:?(0), ? ,a,xp,0,发散,1,收敛,,,,,,,p,0,发散npx,xedxn,N,?、发散 ? sinxdxcosxdx,0aap,0,收敛,,1p,20p,10,解:A.;B.,收敛; C.,发散; D. ,发散 1sinxdx,0218(下列无穷积分为收敛的是( C )。 第 7 页 共 19 页 2332高等数学期末复习指导 x,,,,,,,,122,2A. B.dx
19、C. D. edxxdxxdx,1111x解:A. 发散;B. 发散;C. 收敛;D. 发散; 三(计算题 12,x2x41x,4x,limlim1、求极限 2、求极限 ,x,x,41x,43x,,414122xx,,,44333xx,,解:? 解:? ,,1,,1414141xxx,434343xxx,,212x,,32x3 lim,-lim,1x,x,43x,241x,3,2?原题, ?原题, eexex,1xx,03、求极限解:?,,,, e,1limln1,xxx,,0xxxln(1),,xxxxex1,,e1ex,1e,1lim?原题,=, limlimlim,0,0,0xx,0xx
20、222xxx,2,x,sin3xsin3x3x,2xx,04、求极限lim解:?,,,, 141,xx,0,141x3x3,lim?原题, x,0,22x2ln(13),x22sin2x2xx,0、求极限5解:?,,,, ,3xlimln(13),xx,0xxsin223,3x,?原题,lim, x,02xx,2sin2xe,16、求极限 lim,x0tan4xsin2xsin2x2x4xx,0tan4x解:?,,,, e,12x1lim?原题, x,04x23dy7、设函数,求 yxx,ln(2)13323yxxxx''ln(2)ln2',,,,,,,3ln(2)2&
21、#39;xxxx解: ,2,x第 8 页 共 19 页 2332高等数学期末复习指导 3x2 ,3ln(2)xx2,x3,x2 ,3ln(2)xxdx,dy,2,x,cosx8、设函数,求。 dyyxex,2,3xcos2解: yxex,2131,coscosxxxcosxxcoscos222,,,exex'3yxex''2', ,,,exexxcos'3,,1xxcoscos2 ,exxexsin31,xxcoscos2,exxexdx,sin3dy ,2x,129、设函数,求dy。 yxee,,cos(ln2)2,x,12,解:yxeecosln2
22、,,2,x,12,cosln2xee ,,2,x,12, sinln2ln210xxex,,,,21x,1,xxex,,,sinln222 ,x22sinlnxx,1,,2xe x2sinln2x,x,1 ,,dy2xedx,x,3xedy10、设函数y,,求。 2,x,33xx,33xx33xx,3x,exex22,,exxe321,32exe,,,,e,解:y, ,2222,x22,xx2,x,,33xx32ex,,e,dy,dx 22,x,sin3xy,dy11、设函数,求。 cos1x,第 9 页 共 19 页 2332高等数学期末复习指导 ,sin31cossin31cosxxxx,
23、,,sin3x,解:, y,21cos,x,1cos,x,,cos331cossin3sinxxxxx,,, ,21cos,x,3cos31cossin3sinxxxx,, 21cos,x,3cos31cossin3sinxxxx,dy,dx 21cos,x,x2xdxsin12、计算不定积分 ,222x 2 0 解:xxxxx,4cossin,2cossin8 2222xxxx22,,2cos8sin16cosxxC xdxsin, ,2222,3xxedx13、计算不定积分 解: 1 0 x,11,3x,3x,3x,ee e9311,3x,3x,3xxedx,xe,,eC, ,39四、应用
24、题 1、 要做一个有底无盖的圆柱体容器,已知容器的容积为4立方米,试问如何选取底半径和高的尺寸,才能使所用材料最省。 h解:设圆柱体底半径为,高为, r42,h则体积 Vrh,42,r材料最省即表面积最小 48222S,,,,r表面积rr2,rrh,2, 2rr,843,S'2rS',,令,0,得唯一驻点 ,r2r,4433所以当底半径为米,此时高为米时表面积最小即材料最省。 ,2、 要做一个有底无盖的圆柱体容器,已知容器的容积为16立方米,底面单位面积的造价为10元/平方米,侧面单位面积的造价为20元/平方米,试问如何选取底半径和高的尺寸,才能使建造费用最省。 第 10 页
25、共 19 页 2332高等数学期末复习指导 h解:设圆柱体底半径为,高为, rr162h则体积, hVrh,162,r64022,,,,,且造价函数 frrhr1020210r64043,令,得唯一驻点 fr200,r22r,4433所以当底半径为米,此时高为米时造价最低。 2,3、要用同一种材料建造一个有底无盖的容积为108立方米的圆柱体容器,试问如何选取底半径和高的尺寸,才能使建造费用最省。 解:要使建造费用最省,就是在体积不变的情况下,使圆柱体的表面积最小。 h设圆柱体底半径为,高为, r1082,则体积h Vrh,1082,r108216222S,,,,r则圆柱体仓库的表面积为, rr
26、2,rrh,22rr,216108433,S'S'2r,,令,0,得唯一驻点, ,3r2r,4433所以当底半径为米,此时高为米时表面积最小即建造费用最省。 ,33,4、在半径为8的半圆和直径围成的半圆内内接一个长方形(如图), 为使长方形的面积最大,该长方形的底长和高各为多少。 y2x解:设长方形的底边长为,高为, 2222,yx64y则 8 8,,xy2Sxyxx,2264面积 xx2,x2,Sx,2640令,得唯一驻点 x,42,264,x,所以当底边长为米,此时高为米时面积最大。 82425、在半径为8的圆内内接一个长方形,为使长方形的面积最大, 该长方形的底长和高各为
27、多少。 2x2y解:设长方形的底边长为,高为, 2222,yx64则 8,,xy第 11 页 共 19 页 2332高等数学期末复习指导 2Sxyxx,4464面积 2,x2,令Sx,4640,得唯一驻点 x,42,264,x,米,此时高为米时面积最大。 所以当底边长为8282第二部分 高等数学基础历年试题汇编 一、单项选择题(每小题4分,本题共20分) ,xxee, 1.函数的图形关于(A)对称( y,2yy,x (A) 坐标原点 (B) 轴 (C) 轴 (D) x2.在下列指定的变化过程中,(C)是无穷小量( 11xsin(x,)sin(x,0) (A) (B) xx1x (C) ln(x
28、,1)(x,0) (D) e(x,)f(x2h)f(x),00lim 3.设f(x)在可导,则,(C)( x0h,02h, (A) (B) (C) (D) f(x)2f(x),f(x),2f(x)00001f(x)dx,F(x),cf(lnx)dx, 4.若,则(B)( ,x11F(lnx),cF(),c (A) F(lnx)F(lnx),c (B) (C) (D) xx5.下列积分计算正确的是(D)( 1001,x (A) (B) (C) (D) xsinxdx,0edx,1sin2xdx,xcosxdx,0,11,xx22,y,6.函数的图形关于(B)对称( 2yy,x (A) 坐标原点
29、(B) 轴 (C) 轴 (D) x7.在下列指定的变化过程中,(A)是无穷小量( 11xsin(x,0)xsin(x,) (A) (B) xxxlnx(x,0) (C) (D) e(x,)8.下列等式中正确的是(B)( dxdx1xxd(x),d(),lnxdxd(lnx), (A) (B) (C) (D) d(3),3dxxxx第 12 页 共 19 页 2332高等数学期末复习指导 1f(x)dx,F(x),c 9.若,则f(x)dx,(C)( ,x(A) (B) (C) (D) F(x)F(x),c2F(x),c2F(x)10.下列无穷限积分收敛的是(D)( ,,,,,,,,111xdx
30、dx (A) (B) (C) dx (D) edx2,1110xxx,xxee,11.函数的图形关于(A)对称( y,2yy,x (A) 坐标原点 (B) 轴 (C) 轴 (D) x12.在下列指定的变化过程中,(C)是无穷小量( 11xsin(x,)sin(x,0) (A) (B) xx1x (C) ln(x,1)(x,0) (D) e(x,)f(x2h)f(x),00lim 13.设f(x)在可导,则,(C)( x0h,02h, (A) (B) (C) (D) f(x)2f(x),f(x),2f(x)00001f(x)dx,F(x),cf(lnx)dx, 14.若,则(B)( ,x11F(
31、lnx),cF(),c (A) F(lnx)F(lnx),c (B) (C) (D) xx15.下列积分计算正确的是(D)( 1001,x (A) (B) (C) (D) xsinxdx,0edx,1sin2xdx,xcosxdx,0,1116下列各函数对中,(C)中的两个函数相等( 22f(x),x (A) ,g(x),x (B) ,g(x),x f(x),(x)34g(x),3lnxg(x),4lnx (C) , (D) , f(x),lnxf(x),lnxf(x)(,,,)f(x),f(,x)17设函数的定义域为,则函数的图形关于(D)对称( y,xy (A) (B) 轴 (C) 轴 (
32、D) 坐标原点 xx,018当时,变量(C )是无穷小量( 2sinxx1x (A) (B) (C) (D) e,13xxxfhf,(12)(1)x,1,f(x)lim 19设在点处可导,则(D )( h,0h,f(1),f(1)2f(1),2f(1) (A) (B) (C) (D) 第 13 页 共 19 页 2332高等数学期末复习指导 2 20函数在区间内满足(B)( (2,4)y,x,2x,3(A) 先单调上升再单调下降 (B) 单调上升 (C) 先单调下降再单调上升 (D) 单调下降 ,f(x)dx,21若,则(B)( f(x),cosx,(A) sinx,c (B) (C) ,si
33、nx,c (D) cosx,c,cosx,c72(xcosx,2x,2)dx,(D)( 22,202 (A) (B) (C) (D) 21,23若的一个原函数是,则(B)( f(x)f(x),x211, (A) (B) (C) (D) lnx32xxx24下列无穷积分收敛的是(B)( ,,,,,,,,11x,3dxdx (A) (B) (C) (D) cosxdxedx,1100xx25.设函数f(x)的定义域为(,,,),则函数f(x),f(,x)的图形关于(D)对称( y,xy (A) (B) 轴 (C) 轴 (D) 坐标原点 xx,0 26.当时,变量(C)是无穷小量( sinx1xx
34、(A) (B) (C) (D) e,12xxxfxf,,(1)(1)x, 27.设,则lim(B)( f(x),e,x,0x,11ee2e (A) (B) (C) (D) e42d2xf(x)dx, 28.(A)( ,dx1122f(x)f(x)dx (A) (B) (C) (D) xf(x)xf(x)dx2229.下列无穷限积分收敛的是(B)( ,,,,,,,,11xx,dxdx (A) (B) (C) (D) edxedx,1100xx二、填空题(每小题4分,共20分) 29,xy,(1,2):(2,3 1.函数的定义域是 ( ln(x,1)x,1x,0,x,0y, 2.函数的间断点是 (
35、 ,sinxx,0,第 14 页 共 19 页 2332高等数学期末复习指导 1 3.曲线在处的切线斜率是 ( (1,2)f(x),x,122 4.函数的单调减少区间是 ( (,1)y,(x,1),1,(sinx)dx, 5. sinx,c ( ,ln(x,1)6.函数的定义域是 ( y,(,1,2)24,x1,x,(1,x)x,0x,0k,f(x), 7.若函数,在处连续,则 ( e,2,x,kx,0,33 8.曲线在(1,2)处的切线斜率是 ( f(x),x,1y,arctanx 9.函数的单调增加区间是 ( (,,,),f(x)dx,sinx,c,sinx 10.若,则 ( f(x),l
36、n(x,1)11.函数y,的定义域是 ( (,1,2)24,x1,x,(1,x)x,0x,0k,f(x), 12.若函数,在处连续,则 ( e,2,x,kx,0,33(1,2) 13.曲线在处的切线斜率是 ( f(x),x,1y,arctanx 14.函数的单调增加区间是 (,,,) ( ,f(x)dx,sinx,c,sinx 15.若,则f(x), ( ,x,1y,(1,2):(2,,,)16.函数的定义域是 ( ln(x,1)1,x,(1,x)x,0x,0k,f(x), 17.若函数,在处连续,则 ( e,x,kx,0,1(1,1) 18.曲线在处的切线斜率是 ( f(x),x22(0,,
37、,) 19.函数的单调增加区间是 ( y,ln(1,x),(cosx)dx, 20. ( cosx,c,第 15 页 共 19 页 2332高等数学期末复习指导 x21函数y,,2,x的定义域是 ( ,2,1):(1,2)ln(2,x)x,2x,0,22函数的间断点是 x,0 ( y,sinxx,0,1,x,(1,x)x,0x,0k,23若函数f(x),,在处连续,则 ( e,3,x,kx,0,1 24曲线在处的切线斜率是 ( (2,2)f(x),x,242 25函数的单调增加区间是 ( (2,,,)y,(x,2),1f(x)dx,sin3x,c3cos3x26若,则 ( f(x),22dxx
38、edx,27 ( e,dx三、计算题(每小题11分,共44分) sin(x1)sin(x1)1sin(x,1),limlimlim, 1.计算极限(解: 22x,1x,1x,1(x1)(x1)2x,1x1,,1xxx,y,esine2.设,求( 解: y,y,lnx,cosex1xe 3.计算不定积分dx( 2,x解:由换元积分法得 111xe1uuxx dx,ed(),edu,e,c ,e,c,2xxe 4.计算定积分( lnxdx,1解:由分部积分法得 eeee lnxdx,xlnx,xd(lnx),e,dx,1,1111sin6xlim 5.计算极限( x,0sin5xxxsin6sin
39、6limxsin6666x,0xx66lim,lim,解: x,0x,0xxsin5sin5xsin5555limx,0xx55xsinx,2,y6.设,求(解:由导数四则运算法则得 y,2x第 16 页 共 19 页 2332高等数学期末复习指导 222xxxx,(sinx,2)x,2x(sinx,2)xcosx,x2ln2,2xsinx,2x2, y,44xx1xx,xcosx,x2ln2,2sinx,2 ,3x2xxxxxx,7.设,求(. 解: y,y,siney,2esinecose,esin(2e)y8.设是由方程确定的函数,求(解:等式两端求微分得 dyyyx,()ycosx,e
40、左端 ,d(ycosx),yd(cosx),cosxdy,ysinxdx,cosxdyyy 右端 ,d(e),edyy由此得 ,ysinxdx,cosxdy,edyysinxdy,dx整理后得 ycosx,excos3xdx9.计算不定积分( ,解:由分部积分法得 1111xcos3xdx,xsin3x,sin3xdx,xsin3x,cos3x,c ,3339e2lnx,dx10.计算定积分(解:由换元积分法得 ,1x32ee32,lnx5udx,(2,lnx)d(2,lnx),udu, ,11222x2四、应用题(本题16分) 1某制罐厂要生产一种体积为V的有盖圆柱形容器,问容器的底半径与高各为多少时用料最省, h解:设容器的底半径为,高为,则其表面积为 r2V22S2r2rh2r,,,, r2V,S,4r, 2rVV4V,333S,0r,r,h,由,得唯一驻点,由实际问题可知,当时可使用料最省,此时,即当容器的底半径与高分224VV33别为与时,用料最省( 22 圆柱体上底的中心到下底的边沿的距离为l,问当底半径与高分别为多少时,圆柱体的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025届山东省泰安肥城市高二下化学期末检测模拟试题含解析
- 供应工业冷库管理办法
- 数据湖成本控制-洞察及研究
- 档案数据追溯管理办法
- 公安举报投诉管理办法
- 货物装卸机械使用安全守则
- 智能化农用机器人及其人机交互优化-洞察及研究
- 医疗帮扶专家管理办法
- 信用评级机构竞争态势与公司债券发行上市审核探析
- 公安职工餐厅管理办法
- 《企业环保基础培训》课件
- 长沙市二手房交易资金监管合同
- 矿山生态修复培训课件
- 中小学实验室安全培训
- 胃石的内镜下治疗
- 声光影的内心感动:电影视听语言学习通超星期末考试答案章节答案2024年
- 2024-2025学年小学美术一年级上册(2024)人美版.北京(主编杨力)(2024)教学设计合集
- 2024年人教版小学四年级科学(下册)期末试卷及答案
- DL∕T 5161.5-2018 电气装置安装工程质量检验及评定规程 第5部分:电缆线路施工质量检验
- 绿化养护服务投标方案(技术标)
- 2024年江苏富轩实业有限公司招聘笔试冲刺题(带答案解析)
评论
0/150
提交评论