第7章回归分析(压缩)_第1页
第7章回归分析(压缩)_第2页
第7章回归分析(压缩)_第3页
第7章回归分析(压缩)_第4页
第7章回归分析(压缩)_第5页
已阅读5页,还剩56页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、SPSS 16实用教程第第7章章 回归分析回归分析回归分析基本概念回归分析基本概念7.1一元线性回归分析一元线性回归分析7.2多元线性回归分析多元线性回归分析7.3非线性回归分析非线性回归分析7.4 相关分析和回归分析都是研究变量间关系相关分析和回归分析都是研究变量间关系的统计学课题。在应用中,两种分析方法经常的统计学课题。在应用中,两种分析方法经常相互结合和渗透,但它们研究的侧重点和应用相互结合和渗透,但它们研究的侧重点和应用面不同。面不同。 在回归分析中,变量在回归分析中,变量y y称为称为因变量因变量,处,处于于被解释被解释的特殊地位;而在相关分析中,变量的特殊地位;而在相关分析中,变量

2、y y与变量与变量x x处于处于平等的地位平等的地位,研究变量,研究变量y y与变量与变量x x的密切程度和研究变量的密切程度和研究变量x x与变量与变量y y的密切程度是的密切程度是一样的。一样的。 在回归分析中,因变量在回归分析中,因变量y y是随机变量,是随机变量,自变量自变量x x可以是随机变量,可以是随机变量,也可以是非随机的也可以是非随机的确定变量确定变量;而在相关分析中,变量;而在相关分析中,变量x x和变量和变量y y都都是随机变量。是随机变量。 相关分析是测定变量之间的关系密切相关分析是测定变量之间的关系密切程度,所使用的工具是相关系数;而回归分析程度,所使用的工具是相关系数

3、;而回归分析则是侧重于考察变量之间的则是侧重于考察变量之间的数量变化规律数量变化规律,并,并通过一定的数学表达式来描述变量之间的关系,通过一定的数学表达式来描述变量之间的关系,进而确定一个或者几个变量的变化对另一个特进而确定一个或者几个变量的变化对另一个特定变量的定变量的影响程度影响程度。 具体地说,回归分析主要解决以下几方面具体地说,回归分析主要解决以下几方面的问题。的问题。 通过分析大量的样本数据,确定变量通过分析大量的样本数据,确定变量之间的之间的数学关系式数学关系式。 对所确定的数学关系式的可信程度进对所确定的数学关系式的可信程度进行各种行各种统计检验统计检验,并区分出对某一特定变量影

4、,并区分出对某一特定变量影响较为响较为显著显著的变量和影响的变量和影响不显著不显著的变量。的变量。 利用所确定的数学关系式,根据一个利用所确定的数学关系式,根据一个或几个变量的值来预测或控制另一个特定变量或几个变量的值来预测或控制另一个特定变量的取值,并给出这种预测或控制的的取值,并给出这种预测或控制的精确度精确度。 在实际中,根据变量的个数、变量的类型在实际中,根据变量的个数、变量的类型以及变量之间的相关关系,回归分析通常分为以及变量之间的相关关系,回归分析通常分为一元线性回归分析、多元线性回归分析、非线一元线性回归分析、多元线性回归分析、非线性回归分析、曲线估计、性回归分析、曲线估计、时间

5、序列的曲线估计、时间序列的曲线估计、含虚拟自变量的回归分析和逻辑回归分析等类含虚拟自变量的回归分析和逻辑回归分析等类型。型。7.2.1 统计学上的定义和计算公式统计学上的定义和计算公式 定义:一元线性回归分析是在排除其他影定义:一元线性回归分析是在排除其他影响因素或假定其他影响因素确定的条件下,分响因素或假定其他影响因素确定的条件下,分析某一个因素(自变量)是如何影响另一事物析某一个因素(自变量)是如何影响另一事物(因变量)的过程,所进行的分析是比较理想(因变量)的过程,所进行的分析是比较理想化的。其实,在现实社会生活中,任何一个事化的。其实,在现实社会生活中,任何一个事物(因变量)总是受到其

6、他多种事物(多个自物(因变量)总是受到其他多种事物(多个自变量)的影响。变量)的影响。 通过样本数据建立一个回归方程后,不能通过样本数据建立一个回归方程后,不能立即就用于对某个实际问题的预测。必须对其立即就用于对某个实际问题的预测。必须对其作各种统计检验。一般经常作以下的统计检验。作各种统计检验。一般经常作以下的统计检验。 (1 1)拟合优度检验)拟合优度检验 回归方程的拟合优度检验就是要检验样本回归方程的拟合优度检验就是要检验样本数据聚集在样本回归直线周围的密集程度,从数据聚集在样本回归直线周围的密集程度,从而判断回归方程对样本数据的代表程度。而判断回归方程对样本数据的代表程度。 回归方程的

7、拟合优度检验一般用判定系数回归方程的拟合优度检验一般用判定系数R R2 2实现。该指标是建立在对总离差平方和进行实现。该指标是建立在对总离差平方和进行分解的基础之上。分解的基础之上。 (2 2)回归方程的显著性检验()回归方程的显著性检验(F F检验)检验) 回归方程的显著性检验是对因变量与所有回归方程的显著性检验是对因变量与所有自变量之间的线性关系是否显著的一种假设检自变量之间的线性关系是否显著的一种假设检验。验。回归方程的显著性检验一般采用回归方程的显著性检验一般采用F F检验,利用检验,利用方差分析的方法进行。方差分析的方法进行。 (3 3)回归系数的显著性检验()回归系数的显著性检验(

8、t t检验)检验) 所谓回归系数的显著性检验,就是根据样所谓回归系数的显著性检验,就是根据样本估计的结果对总体回归系数的有关假设进行本估计的结果对总体回归系数的有关假设进行检验。检验。 研究问题研究问题 合成纤维的强度与其拉伸倍数有关,测得合成纤维的强度与其拉伸倍数有关,测得试验数据如表试验数据如表7-17-1所示。求合成纤维的强度与所示。求合成纤维的强度与拉伸倍数之间是否存在显著的线性相关关系。拉伸倍数之间是否存在显著的线性相关关系。7.2.2 SPSS中实现过程中实现过程序序 号号拉拉 伸伸 倍倍 数数强度(强度(kg/mm2)12.01.622.52.432.72.543.52.754.

9、03.564.54.275.25.086.36.497.16.5108.07.3119.08.01210.08.1 实现步骤实现步骤 (1 1)输出结果文件中的第一个表格如下)输出结果文件中的第一个表格如下表所示。表所示。 7.2.3 结果和讨论结果和讨论 (2 2)输出的结果文件中第二个表格如下)输出的结果文件中第二个表格如下表所示。表所示。 (3 3)输出的结果文件中第三个表格如下)输出的结果文件中第三个表格如下表所示。表所示。 (4 4)输出的结果文件中第四个表格如下)输出的结果文件中第四个表格如下表所示。表所示。7.3.1 统计学上的定义和计算公式统计学上的定义和计算公式 定义:在上一

10、节中讨论的回归问题只涉及定义:在上一节中讨论的回归问题只涉及了一个自变量,但在实际问题中,影响因变量了一个自变量,但在实际问题中,影响因变量的因素往往有多个。例如,商品的需求除了受的因素往往有多个。例如,商品的需求除了受自身价格的影响外,还要受到消费者收入、其自身价格的影响外,还要受到消费者收入、其他商品的价格、消费者偏好等因素的影响;影他商品的价格、消费者偏好等因素的影响;影响水果产量的外界因素有平均气温、平均日照响水果产量的外界因素有平均气温、平均日照时数、平均湿度等。时数、平均湿度等。 因此,在许多场合,仅仅考虑单个变量是因此,在许多场合,仅仅考虑单个变量是不够的,还需要就一个因变量与多

11、个自变量的不够的,还需要就一个因变量与多个自变量的联系来进行考察,才能获得比较满意的结果。联系来进行考察,才能获得比较满意的结果。这就产生了测定多因素之间相关关系的问题。这就产生了测定多因素之间相关关系的问题。 研究在线性相关条件下,两个或两个以上研究在线性相关条件下,两个或两个以上自变量对一个因变量的数量变化关系,称为多自变量对一个因变量的数量变化关系,称为多元线性回归分析,表现这一数量关系的数学公元线性回归分析,表现这一数量关系的数学公式,称为多元线性回归模型。多元线性回归模式,称为多元线性回归模型。多元线性回归模型是一元线性回归模型的扩展,其基本原理与型是一元线性回归模型的扩展,其基本原

12、理与一元线性回归模型类似,只是在计算上更为复一元线性回归模型类似,只是在计算上更为复杂,一般需借助计算机来完成。杂,一般需借助计算机来完成。 研究问题研究问题 用多元回归分析来分析用多元回归分析来分析3636个员工多个心个员工多个心理变量值(理变量值(z1z1z8z8)对员工满意度)对员工满意度mymy的预测的预测效果,测得试验数据如表效果,测得试验数据如表7-27-2所示。所示。7.3.2 SPSS中实现过程中实现过程z1z2z3z4z5z6z7Z8满满 意意 度度66.0064.0062.0050.0058.0056.001.081.0025.0055.0050.0059.0059.005

13、3.0051.001.001.1122.0050.0047.0049.0045.0046.0046.001.311.2020.0055.0059.0050.0054.0052.0069.001.001.0020.0055.0059.0048.0056.0047.0050.001.001.0024.0062.0054.0068.0046.0046.0051.001.081.0023.0060.0060.0056.0053.0052.0051.001.081.0021.0052.0052.0069.0058.0057.0062.001.001.0023.0056.0055.0057.0039.00

14、44.0046.001.691.0015.0050.0050.0068.0046.0045.0056.001.081.1425.0058.0054.0060.0059.0052.0051.001.001.0025.0053.0052.0055.0057.0065.0064.001.081.0022.0052.0056.0053.0057.0063.0051.001.461.4320.0056.0065.0052.0051.0062.0047.001.001.0022.0050.0063.0059.0053.0055.0048.001.001.0020.0063.0057.0060.0066.0

15、051.0056.001.001.0026.0056.0046.0058.0050.0045.0052.002.231.2921.0047.0050.0057.0049.0050.0048.002.081.1420.0053.0066.0053.0059.0055.0045.001.001.0025.00z1z2z3z4z5z6z7z8满满 意意 度度61.0055.0058.0061.0058.0061.001.151.1423.0059.0064.0060.0052.0054.0056.001.081.0026.0055.0060.0072.0060.0055.0067.001.081.0

16、026.0056.0052.0068.0040.0051.0055.001.851.7130.0059.0051.0061.0056.0052.0056.001.001.0025.0060.0053.0062.0055.0047.0063.001.311.1427.0052.0051.0057.0045.0055.0059.001.231.1420.0056.0057.0057.0052.0059.0055.001.001.1426.0068.0058.0071.0068.0053.0061.001.001.0030.0060.0053.0061.0060.0056.0051.001.001.

17、0027.0064.0056.0074.0050.0059.0057.001.851.1418.0067.0053.0060.0053.0053.0051.001.001.0024.0056.0056.0067.0067.0056.0052.001.001.0024.0053.0046.0049.0043.0050.0048.001.311.1419.0053.0057.0065.0052.0067.0059.001.771.4317.0060.0040.0071.0057.0056.0058.001.081.0024.0054.0045.0044.0049.0042.0046.001.001

18、.0023.00 实现步骤实现步骤 (1 1)输出结果文件中的第一个表格如下)输出结果文件中的第一个表格如下表所示。表所示。7.3.3 结果和讨论结果和讨论 2 2)输出的结果文件中第二个表格如下表)输出的结果文件中第二个表格如下表所示。所示。 (3 3)输出的结果文件中第三个表格如下)输出的结果文件中第三个表格如下表所示。表所示。 (4 4)输出的结果文件中第四个表格如下)输出的结果文件中第四个表格如下表所示。表所示。 (5 5)输出的结果文件中第五个表格如下)输出的结果文件中第五个表格如下表所示。表所示。 (6 6)输出的结果文件中第六个表格为回)输出的结果文件中第六个表格为回归系数分析,

19、如下表所示归系数分析,如下表所示 (7 7)输出的结果文件中第七个表格如下)输出的结果文件中第七个表格如下表所示。表所示。 (8 8)输出的结果文件中第八部分为图形,)输出的结果文件中第八部分为图形,为回归因变量和每个自变量之间的关系点图。为回归因变量和每个自变量之间的关系点图。图图7-87-8为自变量为自变量z1z1和和mymy之间的关系点图。之间的关系点图。7.4.1 统计学上的定义和计算公式统计学上的定义和计算公式 定义:研究在非线性相关条件下,自变量定义:研究在非线性相关条件下,自变量对因变量的数量变化关系,称为非线性回归分对因变量的数量变化关系,称为非线性回归分析。析。 在实际问题中

20、,变量之间的相关关系往往在实际问题中,变量之间的相关关系往往不是线性的,而是非线性的,因而不能用线性不是线性的,而是非线性的,因而不能用线性回归方程来描述它们之间的相关关系,而要采回归方程来描述它们之间的相关关系,而要采用适当的非线性回归分析。用适当的非线性回归分析。 非线性回归问题大多数可以化为线性回归非线性回归问题大多数可以化为线性回归问题来求解,也就是通过对非线性回归模型进问题来求解,也就是通过对非线性回归模型进行适当的变量变换,使其化为线性模型来求解。行适当的变量变换,使其化为线性模型来求解。一般步骤为:一般步骤为: 根据经验或者绘制散点图,选择适当根据经验或者绘制散点图,选择适当的非

21、线性回归方程;的非线性回归方程; 通过变量置换,把非线性回归方程化为通过变量置换,把非线性回归方程化为线性回归;线性回归; 用线性回归分析中采用的方法来确定各用线性回归分析中采用的方法来确定各回归系数的值;回归系数的值; 对各系数进行显著性检验。对各系数进行显著性检验。 计算公式如下。计算公式如下。 在本节中介绍几种常见的非线性回归模型,在本节中介绍几种常见的非线性回归模型,并分别给出其线性化方法及图形。并分别给出其线性化方法及图形。 研究问题研究问题 研究民用汽车总量与国内生产总值的关系。研究民用汽车总量与国内生产总值的关系。数据如表数据如表7-37-3所示。(资料来源:所示。(资料来源:中

22、国统计中国统计年鉴年鉴20072007,中国统计出版社,中国统计出版社,20072007年)年)7.4.2 SPSS中实现过程中实现过程 实现步骤实现步骤7.4.3 结果和讨论结果和讨论 (1 1)第一部分输出相关统计量和参数的)第一部分输出相关统计量和参数的值,如下表所示。值,如下表所示。 (2 2)第二部分输出的是观察值和)第二部分输出的是观察值和CubicCubic,PowerPower两种曲线预测值的对比图,如图两种曲线预测值的对比图,如图7-127-12所所示。示。 回归分析是研究变量与变量之间联系的最回归分析是研究变量与变量之间联系的最为广泛的模型。在实际中,根据变量的个数、为广泛

23、的模型。在实际中,根据变量的个数、类型,以及变量之间的相关关系。类型,以及变量之间的相关关系。 一元线性回归只涉及一个自变量的回归问一元线性回归只涉及一个自变量的回归问题;多元线性回归用于解决两个或两个以上自题;多元线性回归用于解决两个或两个以上自变量对一个因变量的数量变化关系问题;非线变量对一个因变量的数量变化关系问题;非线性回归主要解决在非线性相关条件下,自变量性回归主要解决在非线性相关条件下,自变量对因变量的数量变化关系。对因变量的数量变化关系。 SPSS SPSS中中“AnalyzeAnalyze”/ /“RegressionRegression”菜单可菜单可用于回归统计分析。其中,一元线性回归、多用于回归统计分析。其中,一元线性回归、多元线性回归和含虚拟变量的回归分析可由元线性回归和含虚拟变量的回归分析可由“LinearLinear”子菜单完成;非线性回归分析可由子菜单完成;非线性回归分析可由“Curve EstimationCurve Estimation”子菜单完成。子菜单完成。习题习题

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论