二次函数 (4)_第1页
二次函数 (4)_第2页
二次函数 (4)_第3页
二次函数 (4)_第4页
二次函数 (4)_第5页
已阅读5页,还剩27页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、二次函数教案课题:2.1二次函数教学目标:1、 从实际情景中让学生经历探索分析和建立两个变量之间的二次函数关系的过程,进一步体验如何用数学的方法去描述变量之间的数量关系。2、 理解二次函数的概念,掌握二次函数的形式。3、 会建立简单的二次函数的模型,并能根据实际问题确定自变量的取值范围。4、 会用待定系数法求二次函数的解析式。 教学重点:二次函数的概念和解析式教学难点:本节“合作学习”涉及的实际问题有的较为复杂,要求学生有较强的概括能力。教学设计:一、创设情境,导入新课问题1、现有一根12m长的绳子,用它围成一个矩形,如何围法,才使举行的面积最大?小明同学认为当围成的矩形是正方形时 ,它的面积

2、最大,他说的有道理吗? 问题2、很多同学都喜欢打篮球,你知道吗:投篮时,篮球运动的路线是什么曲线?怎样计算篮球达到最高点时的高度?这些问题都可以通过学习俄二次函数的数学模型来解决,今天我们学习“二次函数”(板书课题)二、 合作学习,探索新知请用适当的函数解析式表示下列问题中情景中的两个变量y与x之间的关系:(1)面积y (cm2)与圆的半径 x ( Cm ) (2)王先生存人银行2万元,先存一个一年定期,一年后银行将本息自动转存为又一个一年定期,设一年定期的年存款利率为文 x 两年后王先生共得本息y元; (3)拟建中的一个温室的平面图如图,如果温室外围是一个矩形,周长为12Om , 室内通道的

3、尺寸如图,设一条边长为 x (cm), 种植面积为 y (m2) 1113x(一) 教师组织合作学习活动:1、 先个体探求,尝试写出y与x之间的函数解析式。2、 上述三个问题先易后难,在个体探求的基础上,小组进行合作交流,共同探讨。(1)y =x2 (2)y = 2000(1+x)2 = 20000x2+40000x+20000 (3) y = (60-x-4)(x-2)=-x2+58x-112(二)上述三个函数解析式具有哪些共同特征? 让学生充分发表意见,提出各自看法。教师归纳总结:上述三个函数解析式经化简后都具y=ax+bx+c (a,b,c是常数, a0)的形式. 板书:我们把形如y=a

4、x+bx+c(其中a,b,C是常数,a0)的函数叫做二次函数(quadratic funcion) 称a为二次项系数, b为一次项系数,c为常数项,请讲出上述三个函数解析式中的二次项系数、一次项系数和常数项(二) 做一做1、 下列函数中,哪些是二次函数?(1) (2) (3) (4) (5)2、分别说出下列二次函数的二次项系数、一次项系数和常数项:(1) (2) (3)3、若函数为二次函数,则m的值为 。三、例题示范,了解规律例1、已知二次函数 当x=1时,函数值是4;当x=2时,函数值是-5。求这个二次函数的解析式。此题难度较小,但却反映了求二次函数解析式的一般方法,可让学生一边说,教师一边

5、板书示范,强调书写格式和思考方法。练习:已知二次函数 ,当x=2时,函数值是3;当x=-2时,函数值是2。求这个二次函数的解析式。例2、如图,一张正方形纸板的边长为2cm,将它剪去4个全等的直角三角形(图中阴影部分)。设AE=BF=CG=DH=x(cm) ,四边形EFGH的面积为y(cm2),求:(1) y关于x 的函数解析式和自变量x的取值范围。(2) 当x分别为0.25,0.5,1.5,1.75时,对应的四边形EFGH的面积,并列表表示。 ABEFCGDH方法:(1)学生独立分析思考,尝试写出y关于x的函数解析式,教师巡回辅导,适时点拨。(2)对于第一个问题可以用多种方法解答,比如:求差法

6、:四边形EFGH的面积=正方形ABCD的面积-直角三角形AEH的面积DE4倍。 直接法:先证明四边形EFGH是正方形,再由勾股定理求出EH2 (3)对于自变量的取值范围,要求学生要根据实际问题中自变量的实际意义来确定。(4)对于第(2)小题,在求解并列表表示后,重点让学生看清x与y 之间数值的对应关系和内在的规律性:随着x的取值的增大,y的值先减后增;y的值具有对称性。练习: 用20米的篱笆围一个矩形的花圃(如图),设连墙的一边为x,矩形的面积为y,求:(1)写出y关于x的函数关系式.(2)当x=3时,矩形的面积为多少?x四、 归纳小结,反思提高本节课你有什么收获? 五、 布置作业课本作业题教

7、学内容:二次函数的图像(1)教学目标:知识与技能:1、经历描点法画函数图像的过程;2、学会观察、归纳、概括函数图像的特征;3、掌握型二次函数图像的特征; 情感态度与价值观:经历从特殊到一般的认识过程,学会合情推理。教学重点:型二次函数图像的描绘和图像特征的归纳 教学难点:选择适当的自变量的值和相应的函数值来画函数图像,该过程较为复杂。教学设计与过程:一、 回顾知识 前面我们在学习正比例函数、一次函数和反比例函数时时如何进一步研究这些函数的? (先用描点法画出函数的图像,再结合图像研究性质。)引入:我们仿照前面研究函数的方法来研究二次函数,先从最特殊的形式即入手。因此本节课要讨论二次函数()的图

8、像。板书课题:二次函数()图像二、探索图像1、 用描点法画出二次函数 和图像(1) 列表x-2-101241014-4-1-0-1-4引导学生观察上表,思考一下问题:无论x取何值,对于来说,y的值有什么特征?对于来说,又有什么特征? 当x取等互为相反数时,对应的y的值有什么特征? (2) 描点(边描点,边总结点的位置特征,与上表中观察的结果联系起来).(3) 连线,用平滑曲线按照x由小到大的顺序连接起来,从而分别得到和的图像。2、 练习:在同一直角坐标系中画出二次函数 和的图像。学生画图像,教师巡视并辅导学困生。(利用实物投影仪进行讲评)3、二次函数()的图像由上面的四个函数图像概括出:(1)

9、 二次函数的图像形如物体抛射时所经过的路线,我们把它叫做抛物线,(2) 这条抛物线关于y轴对称,y轴就是抛物线的对称轴。(3) 对称轴与抛物线的交点叫做抛物线的顶点。注意:顶点不是与y轴的交点。(4) 当时,抛物线的开口向上,顶点是抛物线上的最低点,图像在x轴的上方(除顶点外);当时,抛物线的开口向下,顶点是抛物线上的最高点图像在x轴的 下方(除顶点外)。(最好是用几何画板演示,让学生加深理解与记忆)三、 课堂练习观察二次函数和的图像(1) 填空:抛物线顶点坐标对称轴位 置开口方向(2)在同一坐标系内,抛物线和抛物线的位置有什么关系?如果在同一个坐标系内画二次函数和的图像怎样画更简便? (抛物

10、线与抛物线关于x轴对称,只要画出与中的一条抛物线,另一条可利用关于x轴对称来画)四、例题讲解例题:已知二次函数()的图像经过点(-2,-3)。(1) 求a 的值,并写出这个二次函数的解析式。(2) 说出这个二次函数图像的顶点坐标、对称轴、开口方向和图像的位置。练习:(1)课本第31页课内练习第2题。(2) 已知抛物线y=ax2经过点A(-2,-8)。 (1)求此抛物线的函数解析式; (2)判断点B(-1,- 4)是否在此抛物线上。 (3)求出此抛物线上纵坐标为-6的点的坐标。五、谈收获1.二次函数y=ax2(a0)的图像是一条抛物线.2.图象关于y轴对称,顶点是坐标原点3.当a0时,抛物线的开

11、口向上,顶点是抛物线上的最低点;当a0时,抛物线的开口向上,顶点是抛物线上的最低点。当a0时,抛物线的开口向下,顶点是抛物线上的最高点。三、巩固知识1、例1、求抛物线的对称轴和顶点坐标。有由学生自己完成。师生点评后指出:求抛物线的对称轴和顶点坐标可以采用配方法或者是用顶点坐标公式。2、做一做课本第36页的做一做和第37页的课内练习第1题3、(补充例题)例2已知关于x的二次函数的图像的顶点坐标为(-1,2),且图像过点(1,-3)。(1)求这个二次函数的解析式;(2)求这个二次函数的图像与坐标轴的交点坐标。(此小题供血有余力的学生解答)分析与启发:(1)在已知抛物线的顶点坐标的情况下,将所求的解

12、析式设为什么比较简便?4、练习:(1)课本第37页课内练习第3题。(2)探究活动:一座拱桥的示意图如图(图在书上第37页),当水面宽12m时,桥洞顶部离水面4m。已知桥洞的拱形是抛物线,要求该抛物线的函数解析式,你认为首先要做的工作是什么?如果以水平方向为x轴,取以下三个不同的点为坐标原点:1、点A 2、点B 3、抛物线的顶点C所得的函数解析式相同吗?请试一试。哪一种取法求得的函数解析式最简单?四、小结1、函数的图像与函数的图像之间的关系。2、函数的图像在对称轴、顶点坐标等方面的特征。3、函数的解析式类型:一般式:顶点式:五、布置作业课本作业题补充课题:二次函数的性质(1)教学目标:1.从具体

13、函数的图象中认识二次函数的基本性质.2.了解二次函数与二次方程的相互关系.3.探索二次函数的变化规律,掌握函数的最大值(或最小值)及函数的增减性的概念,会求二次函数的最值,并能根据性质判断函数在某一范围内的增减性情感态度与价值观:培养学生的观察和分析能力。教学方法:观察与分析,归纳。教学重点:二次函数的最大值,最小值及增减性的理解和求法.教学难点:二次函数的性质的应用.教学过程:复习引入二次函数: y=ax2 +bx + c (a 0)的图象是一条抛物线,它的开口由什么决定呢?补充: 当a的绝对值相等时,其形状完全相同,当a的绝对值越大,则开口越小,反之成立.二,新课教学:1.探索填空: 根据

14、下边已画好抛物线y= -2x2的顶点坐标是 , 对称轴是 , 在 侧,即x_0时, y随着x的增大而增大;在 侧,即x_0时, y随着x的增大而减小. 当x= 时,函数y最大值是_. 当x_0时,y0 3.归纳: 二次函数y=ax2+bx+c(a0)的图象和性质(1).顶点坐标与对称轴(2).位置与开口方向(3).增减性与最值当a 0时,在对称轴的左侧,y随着x的增大而减小;在对称轴的右侧,y随着x的增大而增大;当 时,函数y有最小值 。当a 0时,在对称轴的左侧,y随着x的增大而增大;在对称轴的右侧,y随着x的增大而减小。当 时,函数y有最大值 4.探索二次函数与一元二次方程 二次函数y=x

15、2+2x,y=x2-2x+1,y=x2-2x+2的图象如图所示.(1).每个图象与x轴有几个交点?(2).一元二次方程x2+2x=0,x2-2x+1=0有几个根?验证一下一元二次方程x2-2x+2=0有根吗?(3).二次函数y=ax2+bx+c的图象和x轴交点的坐标与一元二次方程ax2+bx+c=0的根有什么关系?归纳: (3).二次函数y=ax2+bx+c的图象和x轴交点有三种情况: 有两个交点, 有一个交点, 没有交点. 当二次函数y=ax2+bx+c的图象和x轴有交点时, 交点的横坐标就是当y=0时自变量x的值,即一元二次方程ax2+bx+c=0的根.当b2-4ac0时,抛物线与x轴有两

16、个交点,交点的横坐标是一元二次方程0=ax2+bx+c的两个根x1与 x2;当b2-4ac=0时,抛物线与x轴有且只有一个公共点;当b2-4ac0时,抛物线与x轴没有交点。举例: 求二次函数图象y=x2-3x+2与x轴的交点A、B的坐标。结论1:方程x2-3x+2=0的解就是抛物线y=x2-3x+2与x轴的两个交点的横坐标。因此,抛物线与一元二次方程是有密切联系的。即:若一元二次方程ax2+bx+c=0的两个根是x1、x2,则抛物线y=ax2+bx+c与轴的两个交点坐标分别是A( x1,0),B(x2,0)5.例题教学:例1: 已知函数写出函数图像的顶点、图像与坐标轴的交点,以及图像与y轴的交

17、点关于图象对称轴的对称点。然后画出函数图像的草图;(2)自变量x在什么范围内时, y随着x的增大而增大?何时y随着x的增大而减少;并求出函数的最大值或最小值。归纳:二次函数五点法的画法三.学习感想: 1、你能正确地说出二次函数的性质吗?2、你能用“五点法”快速地画出二次函数的图象吗?你能利用函数图象回答有关性质吗?四:作业:P39 A 3、4。补充课题:二次函数的性质(2)教学目标:1、掌握二次函数解析式的三种形式,并会选用不同的形式,用待定系数法求二次函数的解析式。2、能根据二次函数的解析式确定抛物线的开口方向,顶点坐标,和对称轴、最值和增减性。3、能根据二次函数的解析式画出函数的图像,并能

18、从图像上观察出函数的一些性质。情感态度与价值观:培养学生的观察和分析能力。教学方法:观察与分析,归纳。教学重点:二次函数的解析式和利用函数的图像观察性质教学难点:利用图像观察性质教学设计:一、复习1、抛物线的顶点坐标是 ,对称轴是 ,在 侧,即x_0时, y随着x的增大而增大; 在 侧,即x_0时, y随着x的增大而减小;当x= 时,函数y最 值是_。2、抛物线的顶点坐标是 ,对称轴是 ,在 侧,即x_0时, y随着x的增大而增大; 在 侧,即x_0时, y随着x的增大而减小;当x= 时,函数y最 值是_。二、例题讲解例1、根据下列条件求二次函数的解析式:(1)函数图像经过点A(-3,0),B

19、(1,0),C(0,-2)(2) 函数图像的顶点坐标是(2,4)且经过点(0,1)(3)函数图像的对称轴是直线x=3,且图像经过点(1,0)和(5,0)说明:本题给出求抛物线解析式的三种解法,关键是看题目所给条件。一般来说:任意给定抛物线上的三个点的坐标,均可设一般式去求;若给定顶点坐标(或对称轴或最值)及另一个点坐标,则可设顶点式较为简单;若给出抛物线与x轴的两个交点坐标,则用分解式较为快捷。例2已知函数y= x2 -2x -3 , ()把它写成的形式;并说明它是由怎样的抛物线经过怎样平移得到的? (2)写出函数图象的对称轴、顶点坐标、开口方向、最值;(3)求出图象与坐标轴的交点坐标;(4)

20、画出函数图象的草图; (5)设图像交x轴于A、B两点,交y 轴于P点,求APB的面积;(6)根据图象草图,说出 x取哪些值时, y=0; y0.说明:(1)对于解决函数和几何的综合题时要充分利用图形,做到线段和坐标的互相转化;(2)利用函数图像判定函数值何时为正,何时为负,同样也要充分利用图像,要使y0.抛物线开口向 a0.抛物线对称轴在y 轴的 侧b=0抛物线对称轴是 轴b0.抛物线与y轴交于 C=0抛物线与y轴交于 c0.抛物线与x 轴有 个交点=0抛物线与x 轴有 个交点0抛物线与x 轴有 个交点三、小结本节课你学到了什么?四、布置作业:课本作业题第5、6题补充作业题:已知二次函数的图像

21、如图所示,下列结论:x-11ya+b+c0 a-b+c0 abc 0 b=2a其中正确的结论的个数是( )A 1个 B 2个 C 3个 D 4个教学后记:课题:2.3二次函数的应用(1)231 把握变量之间的的依赖关系教学目标:1、经历数学建模的基本过程。2、会运用二次函数求实际问题中的最大值或最小值。3、体会二次函数是一类最优化问题的重要数学模型,感受数学的应用价值。情感态度与价值观:培养学生的观察和分析能力。教学方法:观察与分析,启发。教学重点和难点:重点:二次函数在最优化问题中的应用。难点:例1是从现实问题中建立二次函数模型,学生较难理解。教学设计:一、创设情境、提出问题动脑筋一座拱桥的

22、纵截面是抛物线的一段,拱桥的跨度是4.9米,水面宽4米时,拱顶离水面2米,想了解水面宽度变化时,拱顶离水面的高度怎样变化?设问:这是什么样的函数?怎样建立直角坐标系比较简便?如何设函数的解析式?如何确定系数?自变量的取值范围是什么?当水面宽3米时,拱顶离水面高多少米?你是否体会到:从实际问题建立起函数模型,对于解决问题是有效的?二、观察分析,研究问题演示动画,引导学生观察、思考、发现:当矩形周长为8,它的一边变化时,另一边和面积也随之改变。深入探究:如设矩形的一边长为x米,则另一边长为(4-x)米,再设面积为ym2,则它们的函数关系式为并当x =2时(属于范围)即当设计为正方形时,面积最大=4

23、(m2)(为什么)引导学生总结,确定问题的解决方法:在一些涉及到变量的最大值或最小值的应用问题中,可以考虑利用二次函数最值方面的性质去解决。步骤:第一步设自变量;第二步建立函数的解析式;第三步确定自变量的取值范围;第四步根据顶点坐标公式或配方法求出最大值或最小值(在自变量的取值范围内)。三、例练应用,解决问题例1 某厂生产两种产品,价格分别为P1=4万元/吨,P2=8万元/吨;第一种产品的产量为Q1(吨),第二种产品的产量为1吨,成本函数为: (1)当Q1=1吨时,成本C是多少?(2)求利润L与Q1的函数关系式;(3)当Q1=0.8吨时,利润L是多少?(4)当Q1=1吨时,利润L是多少?四、知

24、识整理,形成系统这节课学习了用什么知识解决哪类问题?解决问题的一般步骤是什么?应注意哪些问题?学到了哪些思考问题的方法?五、布置作业:书P43 1、2 P49 A 1、2教学后记:231 二次函数与一元二次方程的联系(1) 知识与技能会结合二次函数的图象分析问题、解决问题,在运用中体会二次函数的实际意义情感态度与价值观:培养学生分析问题和解决问题的能力。教学方法:启发与探究。教学过程:创新思维生活中,我们常会遇到与二次函数及其图象有关的问题,比如在2008 北京奥运会的赛场上,很多项目,如跳水、铅球、篮球、足球、排球等都与二次函数及其图象息息相关你知道二次函数在生活中的其它方面的运用吗?实践与

25、探索例1如图2631,一位运动员推铅球,铅球行进高度y(m)与水平距离x(m)之间的关系是,问此运动员把铅球推出多远?解 如图,铅球落在x轴上,则y=0,因此,解方程,得(不合题意,舍去)所以,此运动员把铅球推出了10米探索 此题根据已知条件求出了运动员把铅球推出的实际距离,如果创设另外一个问题情境:一个运动员推铅球,铅球刚出手时离地面m,铅球落地点距铅球刚出手时相应的地面上的点10m,铅球运行中最高点离地面3m,已知铅球走过的路线是抛物线,求它的函数关系式你能解决吗?试一试例2如图2632,公园要建造圆形的喷水池,在水池中央垂直于水面处安装一个柱子OA,水流在各个方向沿形状相同的抛物线路线落

26、下,为使水流形状较为漂亮,要求设计成水流在离OA距离为1m处达到距水面最大高度225m(1)若不计其他因素,那么水池的半径至少要多少米,才能使喷出的水流不致落到池外?(2)若水流喷出的抛物线形状与(1)相同,水池的半径为35m,要使水流不落到池外,此时水流最大高度应达多少米?(精确到01m)分析 这是一个运用抛物线的有关知识解决实际问题的应用题,首先必须将水流抛物线放在直角坐标系中,如图2633,我们可以求出抛物线的函数关系式,再利用抛物线的性质即可解决问题 解 (1)以O为原点,OA为y轴建立坐标系设抛物线顶点为B,水流落水与x轴交点为C(如图2633)由题意得,A(0,125),B(1,2

27、25),因此,设抛物线为将A(0,125)代入上式,得,解得 所以,抛物线的函数关系式为当y=0时,解得 x=-05(不合题意,舍去),x=25,所以C(25,0),即水池的半径至少要25m(2)由于喷出的抛物线形状与(1)相同,可设此抛物线为由抛物线过点(0,125)和(35,0),可求得h= -16,k=37所以,水流最大高度应达37m学生练习阅读书P43 动脑筋 完成书P45 P46 例5及说一说当堂课内练习1在排球赛中,一队员站在边线发球,发球方向与边线垂直,球开始飞行时距地面19米,当球飞行距离为9米时达最大高度55米,已知球场长18米,问这样发球是否会直接把球打出边线?2在一场篮球

28、赛中,队员甲跳起投篮,当球出手时离地高25米,与球圈中心的水平距离为7米,当球出手水平距离为4米时到达最大高度4米设篮球运行轨迹为抛物线,球圈距地面3米,问此球是否投中?3、书P43 动脑筋 本课课外作业A组1在一场足球赛中,一球员从球门正前方10米处将球踢起射向球门,当球飞行的水平距离是6米时,球到达最高点,此时球高3米,已知球门高244米,问能否射中球门?2某公司推出了一种高效环保型洗涤用品,年初上市后,公司经历了从亏损到赢利的过程下面的二次函数图象(部分)刻画了该公司年初以来累积利润s(万元)与销售时间t(月)之间的关系(即前t个月的利润总和s与t之间的关系)根据图象提供的信息,解答下列

29、问题:(1)由已知图象上的三点坐标,求累积利润s(万元)与时间t(月)之间的函数关系式;(2)求截止到几月末公司累积利润可达到30万元;(3)求第8个月公司所获利润是多少万元?3如图,一位运动员在距篮下4m处跳起投篮,球运行的路线是抛物线,当球运行的水平距离为25m时,达到最大高度35m,然后准确落入篮圈,已知篮圈中心到地面的距离为305m(1)建立如图所示的直角坐标系,求抛物线的函数关系式;(2)该运动员身高18m,在这次跳投中,球在头顶上方025m处出手,问:球出手时,他跳离地面的高度是多少? B组4某公司草坪的护栏是由50段形状相同的抛物线组成的,为牢固起见,每段护栏需按间距04m加设不

30、锈钢管(如图a)做成的立柱,为了计算所需不锈钢管立柱的总长度,设计人员利用图b所示的坐标系进行计算(1)求该抛物线的函数关系式;(2)计算所需不锈钢管立柱的总长度5某跳水运动员在进行10m跳台跳水训练时,身体(看成一点)在空中的运动路线是如图所示的一条抛物线在跳某个规定动作时,正常情况下,该运动员在空中的最高处距水面m,入水处距池边的距离为4m,同时运动员在距水面高度5m以前,必须完成规定的翻腾动作,并调整好入水姿势时,否则就会出现失误(1)求这条抛物线的函数关系式;(2)在某次试跳中,测得运动员在空中的运动路线是(1)中的抛物线,且运动员在空中调整好入水姿势时,距池边的水平距离为m,问此次跳

31、水会不会失误?并通过计算说明理由教学后记231 二次函数与一元二次方程的联系(2)知识与技能让学生进一步体验把实际问题转化为有关二次函数知识的过程情感态度与价值观:培养学生分析问题和解决问题的能力。教学方法:启发与探究。教学过程:创新思维 二次函数的有关知识在经济生活中的应用更为广阔,我们来看这样一个生活中常见的问题:某广告公司设计一幅周长为12米的矩形广告牌,广告设计费为每平方米1000元,设矩形一边长为x米,面积为S平方米请你设计一个方案,使获得的设计费最多,并求出这个费用你能解决它吗?类似的问题,我们都可以通过建立二次函数的数学模型来解决实践与探索例1某化工材料经销公司购进了一种化工原料

32、共7000千克,购进价格为每千克30元。物价部门规定其销售单价不得高于每千克70元,也不得低于30元。市场调查发现:单价定为70元时,日均销售60千克;单价每降低1元,日均多售出2千克。在销售过程中,每天还要支出其他费用500元(天数不足一天时,按整天计算)。设销售单价为x元,日均获利为y元。(1)求y关于x的二次函数关系式,并注明x的取值范围;(2)将(1)中所求出的二次函数配方成的形式,写出顶点坐标;在直角坐标系画出草图;观察图象,指出单价定为多少元时日均获利最多,是多少?分析 若销售单价为x元,则每千克降低(70-x)元,日均多售出2(70-x)千克,日均销售量为60+2(70-x)千克

33、,每千克获利为(x-30)元,从而可列出函数关系式。解 (1)根据题意,得 (30x70)。(2)。顶点坐标为(65,1950)。二次函数草图略。经观察可知,当单价定为65元时,日均获利最多,是1950元。例2。某公司生产的某种产品,它的成本是2元,售价是3元,年销售量为100万件为了获得更好的效益,公司准备拿出一定的资金做广告根据经验,每年投入的广告费是x(十万元)时,产品的年销售量将是原销售量的y倍,且y是x的二次函数,它们的关系如下表:X(十万元)012y11518(1)求y与x的函数关系式;(2)如果把利润看作是销售总额减去成本费和广告费,试写出年利润S(十万元)与广告费x(十万元)的

34、函数关系式;(3)如果投入的年广告费为1030万元,问广告费在什么范围内,公司获得的年利润随广告费的增大而增大?解 (1)设二次函数关系式为。由表中数据,得 。解得。所以所求二次函数关系式为。(2)根据题意,得。(3)。由于1x3,所以当1x2。5时,S随x的增大而增大。当堂课内练习1、将进货单价为70元的某种商品按零售价100元一个售出时,每天能卖出20个,若这种商品的零售价在一定范围内每降价1元,其日销售量就增加1个,为了获得最大利润,则应降价 ( )A、5元 B、10元 C、15元 D、20元2、某公司生产某种产品,每件产品成本是3元,售价是4元,年销售量为10万件,为了获得更好的效益,

35、公司准备拿出一定的资金做广告根据经验,每年投入的广告费是x(万元)时,产品的年销售量将是原销售量的y倍,且,如果把利润看作是销售总额减去成本费和广告费,试写出年利润S(万元)与广告费x(万元)的函数关系式,并计算广告费是多少万元时,公司获得的年利润最大,最大年利润是是多少万元?本课课外作业A组1.某商场以每件42元的价钱购进一种服装,根据试销得知:这种服装每天的销售量t(件),与每件的销售价x(元/件)可看成是一次函数关系:t=-3x+204。(1)写出商场卖这种服装每天的销售利润y与每件的销售价x之间的函数关系式(每天的销售利润是指所卖出服装的销售价与购进价的差);(2)通过对所得函数关系式

36、进行配方,指出:商场要想每天获得最大的销售利润,每件的销售价定为多少最为合适;最大销售利润为多少?2某旅社有客房120间,当每间房的日租金为50元时,每天都客满,旅社装修后,要提高租金,经市场调查,如果一间客房日租金增加5元,则客房每天出租数会减少6间,不考虑其他因素,旅社将每间客房日租金提高到多少元时,客房的总收入最大?比装修前客房日租金总收入增加多少元?3某商店经销一种销售成本为每千克40元的水产品据市场分析,若按每千克50元销售,一个月能售出500kg;销售单价每涨1元,月销售量就减少10kg针对这种水产品的销售情况,请解答以下问题:(1)当销售单价定为每千克55元时,计算月销售量和月销

37、售利润;(2)设销售单价为每千克x元,月销售利润为y元,求y与x的函数关系式;(3)商店想在月销售成本不超过10000元的情况下,使得月销售利润达到8000元,销售单价应定为多少?B组4行驶中的汽车在刹车后由于惯性的作用,还要继续向前滑行一段距离才能停止,这段距离称为“刹车距离”,为了测定某种型号汽车的刹车性能车速不超过140千米/时,对这种汽车进行测试,数据如下表:刹车时车速(千米/时)0102030405060刹车距离00310213655781以车速为x轴,以刹车距离为y轴,在坐标系中描出这些数据所表示的点,并用平滑的曲线连结这些点,得到函数的大致图象;2观察图象,估计函数的类型,并确定

38、一个满足这些数据的函数关系式;3该型号汽车在国道上发生一次交通事故,现场测得刹车距离为465米,请推测刹车时的车速是多少?请问在事故发生时,汽车是超速行驶还是正常行驶?本课教学体会231 二次函数与一元二次方程的联系(3)知识与技能(1)会求出二次函数与坐标轴的交点坐标;(2)了解二次函数与一元二次方程、一元二次不等式之间的关系情感态度与价值观:培养学生分析问题和解决问题的能力。教学方法:启发与探究。教学过程:创新思维给出三个二次函数:(1);(2);(3)它们的图象分别为观察图象与x轴的交点个数,分别是 个、 个、 个你知道图象与x轴的交点个数与什么有关吗?另外,能否利用二次函数的图象寻找方

39、程,不等式或的解?实践与探索例1求抛物线与x轴的交点的横坐标。(书P44例2)求抛物线与x轴的交点的横坐标。(书P44例3)例2、画出函数的图象,根据图象回答下列问题(1)图象与x轴、y轴的交点坐标分别是什么?(2)当x取何值时,y=0?这里x的取值与方程有什么关系?(3)x取什么值时,函数值y大于0?x取什么值时,函数值y小于0?解 图象如图2634,(1)图象与x轴的交点坐标为(-1,0)、(3,0),与y轴的交点坐标为(0,-3)(2)当x= -1或x=3时,y=0,x的取值与方程的解相同(3)当x-1或x3时,y0;当 -1x3时,y0回顾与反思 (1)二次函数图象与x轴的交点问题常通

40、过一元二次方程的根的问题来解决;反过来,一元二次方程的根的问题,又常用二次函数的图象来解决(2)利用函数的图象能更好地求不等式的解集,先观察图象,找出抛物线与x轴的交点,再根据交点的坐标写出不等式的解集例3(1)已知抛物线,当k= 时,抛物线与x轴相交于两点(2)已知二次函数的图象的最低点在x轴上,则a= (3)已知抛物线与x轴交于两点A(,0),B(,0),且,则k的值是 分析 (1)抛物线与x轴相交于两点,相当于方程有两个不相等的实数根,即根的判别式0(2)二次函数的图象的最低点在x轴上,也就是说,方程的两个实数根相等,即=0(3)已知抛物线与x轴交于两点A(,0),B(,0),即、是方程

41、的两个根,又由于,以及,利用根与系数的关系即可得到结果请同学们完成填空回顾与反思 二次函数的图象与x轴有无交点的问题,可以转化为一元二次方程有无实数根的问题,这可从计算根的判别式入手例4已知二次函数,(1)试说明:不论m取任何实数,这个二次函数的图象必与x轴有两个交点;(2)m为何值时,这两个交点都在原点的左侧?(3)m为何值时,这个二次函数的图象的对称轴是y轴?分析 (1)要说明不论m取任何实数,二次函数的图象必与x轴有两个交点,只要说明方程有两个不相等的实数根,即0(2)两个交点都在原点的左侧,也就是方程有两个负实数根,因而必须符合条件0,综合以上条件,可解得所求m的值的范围(3)二次函数

42、的图象的对称轴是y轴,说明方程有一正一负两个实数根,且两根互为相反数,因而必须符合条件0,解 (1)=,由,得,所以0,即不论m取任何实数,这个二次函数的图象必与x轴有两个交点(2)由,得;由,得;又由(1),0,因此,当时,两个交点都在原点的左侧(3)由,得m=2,因此,当m=2时,二次函数的图象的对称轴是y轴探索 第(3)题中二次函数的图象的对称轴是y轴,即二次函数是由函数上下平移所得,那么,对一次项系数有何要求呢?请你根据它入手解本题当堂课内练习1已知二次函数的图象如图,则方程的解是 ,不等式的解集是 ,不等式的解集是 2抛物线与y轴的交点坐标为 ,与x轴的交点坐标为 3已知方程的两根是,-1,则二次函数与x轴的两个交点间的距离为 4函数的图象与x轴有且只有一个交点,求a的值及交点坐标本课课外作业A组1已知二次函数,画出此抛物线的图象,根据图象回答下列问题(1)方程的解是什么?(2)x取什么值时,函数值大于0?x取什么值时,函数值小于0?2如果二次函数的顶点在x轴上,求c的值3不论自变量x取什么数,二次函数的函数值总是正值,求m的取值范围4已知二次函数,求:(1)此函数图象的开口方向、对称轴和顶点坐标,并画出草图; (2)以此函数图象与x轴、y轴的交点为顶

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论