




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、解直角三角形应用举例例例3: 2012年年6月月18日,日,“神舟神舟”九号载人航天飞船与九号载人航天飞船与“天宫天宫”一号目标飞一号目标飞行器成功实现交会对接行器成功实现交会对接 ,“神舟神舟”九号与九号与“天宫天宫”一号的组合体在一号的组合体在离地球表离地球表面面343km的圆形轨道上运行如图,当组合体运行到地球表面上的圆形轨道上运行如图,当组合体运行到地球表面上P点的正上点的正上方时,从中能直接看到地球表面最远的点在什么位置?最远点与方时,从中能直接看到地球表面最远的点在什么位置?最远点与P点的距离点的距离是多少?(地球半径约为是多少?(地球半径约为6 400km,取取3.142,结果取
2、整数)结果取整数) 分析分析:从组合体中能最远直从组合体中能最远直接看到的地球上的点,应是接看到的地球上的点,应是视线与地球相切时的切点视线与地球相切时的切点OQFP 如图,如图,O O表示地球,点表示地球,点F F是组合是组合体的位置,体的位置,FQFQ是是O O的切线,切点的切线,切点Q Q是从组合体观测地球时的最远是从组合体观测地球时的最远点点 的长就是地面上的长就是地面上P P、Q Q两点间的距离,为计算两点间的距离,为计算 的长需的长需先求出先求出POQPOQ(即(即a a)PQPQPQ例题例题 解:在图中,解:在图中,FQ是是 O的切线,的切线,FOQ是直角三角形是直角三角形 PQ
3、的长为的长为 当飞船在当飞船在P点正上方时,从飞船观测地球时的最远点距离点正上方时,从飞船观测地球时的最远点距离P点约点约2051kmOQFP9491. 034364006400cos+=OFOQaQo18.360a2051640018018.36p例例4: 热气球的探测器显示,从热气球看一栋高楼顶部的仰角为热气球的探测器显示,从热气球看一栋高楼顶部的仰角为30,看这栋高楼底部的俯,看这栋高楼底部的俯 角为角为60,热气球与高楼的水平距,热气球与高楼的水平距离为离为120m,这栋高楼有多高(结果取整数),这栋高楼有多高(结果取整数)分析分析:我们知道,在视线与水平线所:我们知道,在视线与水平线
4、所成的角中视线在水平线上方的是仰角,成的角中视线在水平线上方的是仰角,视线在水平线下方的是俯角,因此,视线在水平线下方的是俯角,因此,在图中,在图中,a=30,=60 Rt RtABCABC中,中,a a =30=30,ADAD120120,所以利用解直角三角形的知识求出所以利用解直角三角形的知识求出BDBD;类似地可以求出;类似地可以求出CDCD,进而求出,进而求出BCBCABCD仰角仰角水平线水平线俯角俯角解解:如图,:如图,a = 30,= 60, AD120ADCDADBDa=tan,tanQo30tan120tan=aADBD34033120=o60tan120tan=ADCD312
5、03120=3120340+=+=CDBDBC答:这栋楼高约为答:这栋楼高约为277mABCD2773160=1. 建筑物建筑物BC上有一旗杆上有一旗杆AB,由距,由距BC40m的的D处观察旗杆顶部处观察旗杆顶部A的仰角的仰角60,观察底部,观察底部B的的仰角为仰角为45,求旗杆的高度(精确到,求旗杆的高度(精确到0.1m).ABCD40m6045ABCD40m6045解:在等腰三角形解:在等腰三角形BCD中中ACD=90BC=DC=40m在在RtACD中中tanACADCDC=tanACADC DC=所以所以AB=ACBC=29.2答:棋杆的高度为答:棋杆的高度为29.2m.练习练习 =ta
6、n60040=4032. 如图,沿如图,沿AC方向开山修路为了加快施工进度,要在小山的另一边同方向开山修路为了加快施工进度,要在小山的另一边同时施工,从时施工,从AC上的一点上的一点B取取ABD = 150,BD = 520m,D=60,那,那么开挖点么开挖点E离离D多远正好能使多远正好能使A,C,E成一直线成一直线.60150520mABCEDBED=ABDD=90cosDEBDEBD=cosDEBDE BD=答:开挖点答:开挖点E离离点点D 260m正好能使正好能使A,C,E成一直线成一直线.解:要使解:要使A、C、E在同一直线上,在同一直线上,则则 ABD是是 BDE 的一个外角的一个外
7、角=cos600520=260例例5 如图,一艘海轮位于灯塔如图,一艘海轮位于灯塔P的北偏东的北偏东65方向,距离灯塔方向,距离灯塔80海里海里的的A处,它沿正南方向航行一段时间后,到达位于灯塔处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东的南偏东34方向上的方向上的B处,这时,海轮所在的处,这时,海轮所在的B处距离灯塔处距离灯塔P有多远(结果有多远(结果取整数)?取整数)?解:如图解:如图 ,在,在RtAPC中,中,PCPAcos(9065)80cos25800.91=72.505在在RtBPC中,中,B34PBPCB =sinQ当海轮到达位于灯塔当海轮到达位于灯塔P的南偏东的南偏东
8、34方向时,它距离灯塔方向时,它距离灯塔P大约大约130海里海里6534PBCA130559. 0505.7234sin505.72sin=oBPCPB 解直角三角形有广泛的应用,解决问题时,要根据实际情况灵活运用解直角三角形有广泛的应用,解决问题时,要根据实际情况灵活运用相关知识,例如,当我们要测量如图所示大坝的高度相关知识,例如,当我们要测量如图所示大坝的高度h时,只要测出仰时,只要测出仰角角a和大坝的坡面长度和大坝的坡面长度l,就能算出,就能算出h=lsina,但是,当我们要测量如图所,但是,当我们要测量如图所示的山高示的山高h时,问题就不那么简单了,这是由于不能很方便地得到仰角时,问题
9、就不那么简单了,这是由于不能很方便地得到仰角a和山坡长度和山坡长度l化整为零,积零为整,化曲为直,以直代曲的解决问题的策略化整为零,积零为整,化曲为直,以直代曲的解决问题的策略与测坝高相比,测山高的困难在于;坝坡是与测坝高相比,测山高的困难在于;坝坡是“直直”的,而山坡是的,而山坡是“曲曲”的,怎样解决这样的问题呢?的,怎样解决这样的问题呢?hhll 我们设法我们设法“化曲为直,以直代曲化曲为直,以直代曲” 我们可以把山坡我们可以把山坡“化整化整为零为零”地划分为一些小段,图表示其中一部分小段,划分小段地划分为一些小段,图表示其中一部分小段,划分小段时,注意使每一小段上的山坡近似是时,注意使每
10、一小段上的山坡近似是“直直”的,可以量出这段的,可以量出这段坡长坡长l1,测出相应的仰角,测出相应的仰角a1,这样就可以算出这段山坡的高度,这样就可以算出这段山坡的高度h1=l1sina1. 在每小段上,我们都构造出直角三角形,利用上面的方法分别算在每小段上,我们都构造出直角三角形,利用上面的方法分别算出各段山坡的高度出各段山坡的高度h1,h2,hn,然后我们再然后我们再“积零为整积零为整”,把,把h1,h2,hn相加,于是得到山高相加,于是得到山高h.hl 以上解决问题中所用的以上解决问题中所用的“化整为零,积零为整化整为零,积零为整”“”“化曲为直,以直代曲化曲为直,以直代曲”的做法,就是
11、高等数学中微积分的基本思想,它在数学中有重要地位,在的做法,就是高等数学中微积分的基本思想,它在数学中有重要地位,在今后的学习中,你会更多地了解这方面的内容今后的学习中,你会更多地了解这方面的内容 1. 海中有一个小岛海中有一个小岛A,它的周围,它的周围8海里内有暗礁,渔船跟踪鱼群由西向到航海里内有暗礁,渔船跟踪鱼群由西向到航行,在行,在B点测得小岛点测得小岛A在北偏东在北偏东60方向上,航行方向上,航行12海里到达海里到达D点,这时测点,这时测得小岛得小岛A在北偏到在北偏到30方向上,如果渔船不改变航线继续向东航行,有没有方向上,如果渔船不改变航线继续向东航行,有没有触礁的危险?触礁的危险?
12、BADF解:由点解:由点A作作BD的垂线的垂线交交BD的延长线于点的延长线于点F,垂足为,垂足为F,AFD=90由题意图示可知由题意图示可知DAF=30设设DF= x , AD=2x则在则在RtADF中,根据勾股定理中,根据勾股定理222223AFADDFxxx=在在RtABF中,中,tanAFABFBF=3tan3012xx=+o解得解得x=666 310.4AFx=10.4 8没有触礁危险没有触礁危险练习练习30602. 如图,拦水坝的横断面为梯形如图,拦水坝的横断面为梯形ABCD(图中(图中i=1:3是指坡面的铅直高是指坡面的铅直高度度DE与水平宽度与水平宽度CE的比),根据图中数据求:的比),根据图中数据求:(1)坡角)坡角a和和;(2)坝顶宽)坝顶宽AD和斜坡和斜坡AB的长(精确到的长(精确到0.1m)BADFEC6mi=1:3i=1:1.5解解:(:(1)在)在RtAFB中,中,AFB=90tan11.5AFiBF= = :33.7o 在在RtCDE中,中,CED=90tan1:3DEiCE= =18.4o利用解直角三角形的知识解决实际问题的一般过程是:利用解
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025耕地流转合同规定
- 2025室内装修水电工合同范本
- 重庆考编面试真题及答案
- 应届生:自动化工程师面试题库及答案
- 小学生人防宣传教育讲座
- 心灵情感功能介绍课件
- 甘肃定西公开招聘农村(村务)工作者笔试题含答案2024年
- 中医呼吸衰竭护理查房
- 外卖员创意画课件
- 青海玉树州公开招聘农村(村务)工作者笔试题含答案2024年
- 电力工程钢网架安装工程检验批质量验收记录表
- 小学三年级音乐《马兰谣》课件
- “当代文化参与”学习任务群相关单元的设计思路与教学建议课件(共51张PPT)
- 提高卧床患者踝泵运动的执行率品管圈汇报书模板课件
- 同理心的应用教学教材课件
- DB4102-T 025-2021海绵城市建设施工与质量验收规范-(高清现行)
- 城市轨道交通安全管理隐患清单
- 锡膏使用记录表
- 儿童保健学课件:绪论
- 中小学校园安全稳定工作岗位责任清单
- 校园安全存在问题及对策
评论
0/150
提交评论