




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、海淀区高三年级第二学期期末练习 数学(理科) 2009.05一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项. (1)已知集合,集合,则等于 ( )(A) (B) (C) (D)(2)某行业主管部门所属的企业有800家,按企业固定资产规模分为大型企业中型企业小型企业. 大中小型企业分别有80家,320家和400家,该行业主管部门要对所属企业的第一季度生产状况进行分层抽样调查,共抽查100家企业. 其中大型企业中应抽查 ( )(A)家 (B)家 (C)家 (D)家(3)若,则 ( ) (A) (B)(C) (D) (4)在中,所对的边长分别为,如
2、果,那么一定是( )(A)锐角三角形 (B)钝角三角形 (C)直角三角形 (D)等腰三角形(5)若直线与直线关于点对称,则直线恒过定点 ( )(A) (B) (C) (D) (6)某班班会准备从甲、乙等7名学生中选派4名学生发言,要求甲、乙两名同学至少有一人参加,且若甲乙同时参加,则他们发言时不能相邻.那么不同的发言顺序种数为 ( )(A)360 (B)520 (C)600 (D)720 (7)在棱长均为2的正四棱锥中,点为的中点,则下列命题正确的是 ( ) (A)平面,且到平面的距离为 (B)平面,且到平面的距离为(C)与平面不平行,且与平面所成的角大于 (D)与平面不平行,且与平面所成的角
3、小于(8)已知点是矩形所在平面内任意一点,则下列结论中正确的是 ( )(A) (B) (C) (D)二、填空题:本大题共6小题,每小题5分,共30分.把答案填在题中横线上.(9)已知等比数列中,那么的值为 . (10)已知函数是连续函数,则实数的值是 . (11)已知,则的值等于_ _ .(12)已知函数的导函数的部分图象如图所示,且导函数有最小值,则 , . (13)以双曲线的一个顶点为圆心的圆经过该双曲线的一个焦点,且与该双曲线的一条准线相切,则该双曲线的离心率为 .(14)下图展示了一个由区间(0,1)到实数集R的映射过程:区间中的实数m对应数轴上的点M,如图1;将线段围成一个圆,使两端
4、点A、B恰好重合,如图2;再将这个圆放在平面直角坐标系中,使其圆心在y轴上,点A的坐标为,如图3.图3中直线与x轴交于点,则m的象就是n,记作.图1图2图3()方程的解是 ;()下列说法中正确命题的序号是 .(填出所有正确命题的序号); 是奇函数; 在定义域上单调递增; 的图象关于点 对称三、解答题: 本大题共6小题,共80分.解答应写出文字说明, 演算步骤或证明过程.(15)(本小题共13分)已知数列的前项和为,, (,).且,成等差数列.()求的值;()求数列的通项公式.(16)(本小题共13分)检测部门决定对某市学校教室的空气质量进行检测,空气质量分为A、B、C三级. 每间教室的检测方式
5、如下:分别在同一天的上、下午各进行一次检测,若两次检测中有C级或两次都是B级,则该教室的空气质量不合格. 设各教室的空气质量相互独立,且每次检测的结果也相互独立. 根据多次抽检结果,一间教室一次检测空气质量为A、B、C三级的频率依次为. ()在该市的教室中任取一间,估计该间教室的空气质量合格的概率;()如果对该市某中学的4间教室进行检测,记在上午检测空气质量为A级的教室间数为,并以空气质量为A级的频率作为空气质量为A级的概率,求的分布列及期望.(17)(本小题共14分)如图,斜三棱柱的底面是直角三角形,点在底面上的射影恰好是的中点,且()求证:平面平面;()求证:;()求二面角的大小. (18
6、)(本小题共13分)已知:函数(其中常数).()求函数的定义域及单调区间;()若存在实数,使得不等式成立,求a的取值范围(19)(本小题共13分)已知抛物线C:,过定点,作直线交抛物线于(点在第一象限). ()当点A是抛物线C的焦点,且弦长时,求直线的方程; ()设点关于轴的对称点为,直线交轴于点,且.求证:点B的坐标是并求点到直线的距离的取值范围.(20)(本小题共14分)已知定义域为,满足:;对任意实数,有.()求,的值;()求的值;()是否存在常数,使得不等式对一切实数成立.如果存在,求出常数的值;如果不存在,请说明理由.海淀区高三年级第二学期期末练习 数学(理科) 参考答案及评分标准
7、2009.05一、选择题(本大题共8小题,每小题5分,共40分)ACDDB CDC二、填空题(本大题共6小题,每小题5分.有两空的小题,第一空3分,第二空2分,共30分)(9)62 (10)2 (11) (12)2,(13) (14),三、解答题(本大题共6小题,共80分)(15)(本小题共13分)解:()(),(). 1分,成等差数列, . 3分. 5分. 6分()由()得().数列为首项是,公差为1的等差数列. 8分. 10分当时,. 12分当时,上式也成立. 13分().(16)(本小题共13分)解:()该间教室两次检测中,空气质量均为A级的概率为.2分该间教室两次检测中,空气质量一次为
8、A级,另一次为B级的概率为. 4分设“该间教室的空气质量合格”为事件E.则 5分. 6分答:估计该间教室的空气质量合格的概率为.()由题意可知,的取值为0,1,2,3,4. 7分.随机变量的分布列为:01234 12分解法一:. 13分解法二:,. 13分(17)(本小题共14分)()证明:设的中点为.在斜三棱柱中,点在底面上的射影恰好是的中点, 平面ABC. 1分平面,. 2分,.,平面. 4分平面, 平面平面. 5分解法一:()连接,平面,是直线在平面上的射影. 5分,四边形是菱形. 7分. 9分()过点作交于点,连接.,平面.是二面角的平面角. 11分设,则,.平面,平面,.在中,可求.
9、,. 13分.二面角的大小为. 14分解法二:()因为点在底面上的射影是的中点,设的中点为,则平面ABC.以为原点,过平行于的直线为轴,所在直线为轴,所在直线为轴,建立如图所示的空间直角坐标系. 设,由题意可知,.设,由,得7分. 又. 9分()设平面的法向量为.则.设平面的法向量为.则. 12分. 13分二面角的大小为. 14分(18)(本小题共13分)解:()函数的定义域为 1分. 3分由,解得.由,解得且的单调递增区间为,单调递减区间为, 6分()由题意可知,且在上的最小值小于等于时,存在实数,使得不等式成立 7分若即时,xa+1-0+极小值在上的最小值为则,得 10分若即时,在上单调递减,则在上的最小值为由得(舍) 12分综上所述, 13分(19)(本小题共13分)解:()由抛物线C:得抛物线的焦点坐标为,设直线的方程为:,. 1分由得.所以,.因为, 3分所以.所以.即.所以直线的方程为:或. 5分()设,则. 由得.因为,所以,. 7分 ()设,则. 由题意知:,.即. 显然 9分()由题意知:为等腰直角三角形,即,即. .,. 11分 .即的取值范围是. 13分(20)(本小题共14分)解:()取,得,即.因为,所以. 1分取,得.因为,所以.取,得,所以. 3分()在中取得.所以.在中取,得.在中取,得.所
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 密集复习土木工程师考试试题及答案
- 外务人员面试题及答案
- 中考数学试题及答案遵义
- 大学化学阅读能力的提升与训练试题及答案
- 大学化学反应机制详解与试题及答案
- 创业扶持政策在实践中的作用试题及答案
- 保安考证试题及答案
- 教师如何通过反思构建有效的评估机制试题及答案
- 化学中级考试题及答案
- 冬季养生测试题及答案
- 河南安阳的红色故事
- 基于PLC的蔬菜大棚设计
- 家政保姆护工培训课件
- 糖尿病足围手术期护理
- 《医院劳动合同书》电子版
- 2023年同等学力临床医学考试真题
- 第七讲-信息技术与大数据伦理问题-副本
- 祖暅原理的课件
- 《神经系统的传导通路》课件
- TGIA 004-2020 垃圾填埋场地下水污染防治技术指南
- GB/T 13477.8-2002建筑密封材料试验方法第8部分:拉伸粘结性的测定
评论
0/150
提交评论