上一节,我们学习了解决流感传播问题和平均增长(下降_第1页
上一节,我们学习了解决流感传播问题和平均增长(下降_第2页
上一节,我们学习了解决流感传播问题和平均增长(下降_第3页
上一节,我们学习了解决流感传播问题和平均增长(下降_第4页
上一节,我们学习了解决流感传播问题和平均增长(下降_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、上一节,我们学习了解决上一节,我们学习了解决“流感传流感传播问题和平均播问题和平均增长增长(下降下降)率问题率问题”,现在,我们要学习解决现在,我们要学习解决“面积、体面积、体积问题积问题。1.如图,用长为如图,用长为18m的篱笆(虚线部分),两面靠的篱笆(虚线部分),两面靠墙围成矩形的苗圃墙围成矩形的苗圃.要围成苗圃的面积为要围成苗圃的面积为81m2,应该应该怎么设计怎么设计?解解:设苗圃的一边长为设苗圃的一边长为xm,则另一边长(则另一边长(18-x)m,依题意得依题意得81)18( xx答答:应围成一个边长为应围成一个边长为9米的正方形米的正方形.921xx解得2 2、用、用20cm20

2、cm长的铁丝能否折成面积长的铁丝能否折成面积30cm30cm2 2的矩形的矩形, ,若能够若能够, ,求它的长与宽求它的长与宽; ;若若不能不能, ,请说明理由请说明理由. .解解:设这个矩形的长为设这个矩形的长为xcm,则宽则宽为为 cm,依题意得依题意得)10(x30)10( xx即即x2-10 x+30=0这里这里a=1,b=10,c=30,0203014)10(422acb此方程无解此方程无解.答:用答:用20cm长的铁丝不能折成面积为长的铁丝不能折成面积为30cm2的矩的矩形形.3如图,是长方形鸡场平面示意图,一边如图,是长方形鸡场平面示意图,一边靠墙,另外三面用竹篱笆围成,若竹篱笆

3、总靠墙,另外三面用竹篱笆围成,若竹篱笆总长为长为35m,所围的面积为,所围的面积为150m2,则此长方,则此长方形鸡场的长、宽分别为形鸡场的长、宽分别为_有一个面积为有一个面积为150m2的长方形鸡场的长方形鸡场,鸡鸡场的一边靠墙场的一边靠墙(墙长墙长18m,)另三边用竹篱笆另三边用竹篱笆围城围城,如果竹篱笆的长为如果竹篱笆的长为35m,求鸡场的长求鸡场的长和宽各为多少和宽各为多少?18m 在长方形钢片上冲去一个长方形,制成一个四在长方形钢片上冲去一个长方形,制成一个四周宽相等的长方形框。已知长方形钢片的长为周宽相等的长方形框。已知长方形钢片的长为30cm,宽,宽为为20cm,要使制成的长方形

4、框的面积为要使制成的长方形框的面积为400cm2,求这个,求这个长方形框的框边宽。长方形框的框边宽。X XX X30cm30cm20cm20cm解解:设长方形框的边宽为设长方形框的边宽为xcm,依题意依题意,得得3020(302x)(202x)=400整理得整理得 x2 25x+100=0得得 x1=20, x2=5当当x=20时时,20-2x= -20(舍去舍去);当当x=5时时,20-2x=10答答:这个长方形框的框边宽为这个长方形框的框边宽为5cm探究探究1分析分析:本题关键是如何用本题关键是如何用x的代数式表示这个长方形框的面积的代数式表示这个长方形框的面积 要设计一本书的封面要设计一

5、本书的封面,封面长封面长27,宽宽21,正正中央是一个与整个封面长宽比例相同的矩形中央是一个与整个封面长宽比例相同的矩形,如如果要使四周的边衬所占面积是封面面积的四分果要使四周的边衬所占面积是封面面积的四分之一之一,上、下边衬等宽上、下边衬等宽,左、右边衬等宽左、右边衬等宽,应如何应如何设计四周边衬的宽度设计四周边衬的宽度?(精确到精确到0.1cm)2721分析分析:这本书的长宽之比是这本书的长宽之比是9:7,依题知正中依题知正中央的矩形两边之比也为央的矩形两边之比也为9:7解法一解法一:设正中央的矩形两边分别为设正中央的矩形两边分别为9xcm,7xcm依题意得依题意得21274379 xx解

6、得解得 2331x),(2332舍去不合题意x故上下边衬的宽度为故上下边衬的宽度为:左右边衬的宽度为左右边衬的宽度为:8 . 143275422339272927 x4 . 143214222337212721 x探究探究2 要设计一本书的封面要设计一本书的封面,封面长封面长27,宽宽21,正中正中央是一个与整个封面长宽比例相同的矩形央是一个与整个封面长宽比例相同的矩形,如果如果要使四周的边衬所占面积是封面面积的四分之要使四周的边衬所占面积是封面面积的四分之一一,上、下边衬等宽上、下边衬等宽,左、右边衬等宽左、右边衬等宽,应如何设应如何设计四周边衬的宽度计四周边衬的宽度?2721分析分析:这本

7、书的长宽之比是这本书的长宽之比是9:7,正中央的正中央的矩形两边之比也为矩形两边之比也为9:7,由此判断上下边由此判断上下边衬与左右边衬的宽度之比也为衬与左右边衬的宽度之比也为9:7解法二解法二:设上下边衬的宽为设上下边衬的宽为9xcm,左右边衬宽为,左右边衬宽为7xcm依题意得依题意得212743)1421)(1827(xx解方程得解方程得4336x(以下同学们自己完成以下同学们自己完成)方程的哪个根合方程的哪个根合乎实际意义乎实际意义?为什么为什么?例例1. (2004年年,镇江镇江)学校为了美化校园环境,在一学校为了美化校园环境,在一块长块长40米、宽米、宽20米的长方形空地上计划新建一

8、块米的长方形空地上计划新建一块长长9米、宽米、宽7米的长方形花圃米的长方形花圃.(1)若请你在这块空地上设计一个长方形花圃,)若请你在这块空地上设计一个长方形花圃,使它的面积比学校计划新建的长方形花圃的面积使它的面积比学校计划新建的长方形花圃的面积多多1平方米,请你给出你认为合适的三种不同的方平方米,请你给出你认为合适的三种不同的方案案.(2)在学校计划新建的长方形花圃周长不变的情)在学校计划新建的长方形花圃周长不变的情况下,长方形花圃的面积能否增加况下,长方形花圃的面积能否增加2平方米?如果平方米?如果能,请求出长方形花圃的长和宽;如果不能,请能,请求出长方形花圃的长和宽;如果不能,请说明理

9、由说明理由.解解: (1) 方案方案1:长为:长为 米,宽为米,宽为7米米;719方案方案2:长为:长为16米,宽为米,宽为4米米; 方案方案3:长:长=宽宽=8米米;注:本题方案有无数种注:本题方案有无数种(2)在长方形花圃周长不变的情况下,长方形花)在长方形花圃周长不变的情况下,长方形花圃面积不能增加圃面积不能增加2平方米平方米.由题意得长方形长与宽的和为由题意得长方形长与宽的和为16米米.设长方形花圃设长方形花圃的长为的长为x米,则宽为(米,则宽为(16-x)米)米.x(16-x)=63+2, x2-16x+65=0,046514)16(422acb此方程无解此方程无解.在周长不变的情况

10、下,长方形花圃的面积不能在周长不变的情况下,长方形花圃的面积不能增加增加2平方米平方米学校课外生物小组的实验园地是一块长学校课外生物小组的实验园地是一块长40 米,宽米,宽 26 米的矩形,为便于管理,现要在中间开辟一横两纵三米的矩形,为便于管理,现要在中间开辟一横两纵三条等宽的小道,要使种植面积为条等宽的小道,要使种植面积为 864 平方米,求小平方米,求小道的宽?道的宽? 设小道的宽为设小道的宽为x 米。米。 根据题意得根据题意得:(402x)(26x) = 864088462 xx0)44)(2( xx21 x442 x(不合题意,舍去)(不合题意,舍去) 答:答:小道的宽为小道的宽为2

11、米。米。 小道小道小道小道26404026探究探究3 我们利用我们利用“图形经过移动,图形经过移动,它的面积大小不会改变它的面积大小不会改变”的道理,的道理,把纵、横两条路移动一下,使列把纵、横两条路移动一下,使列方程容易些(目的是求出路面的方程容易些(目的是求出路面的宽,至于实际施工,仍可按原图宽,至于实际施工,仍可按原图的位置修路)的位置修路) 某校为了美化校园某校为了美化校园,准备在一块长准备在一块长32米米,宽宽20米的长方形场地上修筑若干条道路米的长方形场地上修筑若干条道路,余下余下部分作草坪部分作草坪,并请全校同学参与设计并请全校同学参与设计,现在有现在有两位学生各设计了一种方案两

12、位学生各设计了一种方案(如图如图),根据两种根据两种设计方案各列出方程设计方案各列出方程,求图中道路的宽分别求图中道路的宽分别是多少是多少?使图使图(1),(2)的草坪的草坪面积面积为为540540米米2 2. .(1)(2)练习练习(1)解解:(1):(1)如图,设道路的宽为如图,设道路的宽为x米,则米,则540)220)(232(xx化简得,化简得,025262xx1,2521xx解得其中的其中的 x=25超出了原矩形的宽,应舍去超出了原矩形的宽,应舍去.图图(1)中道路的宽为中道路的宽为1米米.(2)(2)草坪矩形的长(横向)为草坪矩形的长(横向)为 ,草坪矩形的宽(纵向)草坪矩形的宽(

13、纵向) 。相等关系是:草坪长相等关系是:草坪长草坪宽草坪宽=540=540米米2 2(20-x)(20-x)米米(32-x)32-x)米米即即3220540.xx化简得:化简得:212521000,50,2xxxx再往下的计算、格式书写与解法再往下的计算、格式书写与解法1 1相同。相同。 例例4某林场计划修一条长某林场计划修一条长750m,断面为,断面为等腰梯形的渠道,断面面积为等腰梯形的渠道,断面面积为1.6m2, 上上口宽比渠深多口宽比渠深多2m,渠底比渠深多,渠底比渠深多0.4m (1)渠道的上口宽与渠底宽各是多少?)渠道的上口宽与渠底宽各是多少? (2)如果计划每天挖土)如果计划每天挖

14、土48m3,需要多,需要多少天才能把这条渠道挖完?少天才能把这条渠道挖完?分析:分析:因为渠深最小,为了便于计算,不妨因为渠深最小,为了便于计算,不妨设渠深为设渠深为xm,则上口宽为,则上口宽为x+2, 渠底为渠底为x+0.4,那么,根据梯形的面积公式便可建,那么,根据梯形的面积公式便可建模模解:(解:(1)设渠深为)设渠深为xm 则渠底为(则渠底为(x+0.4)m,上口宽为(,上口宽为(x+2)m依题意,得:依题意,得:6 . 1)4 . 02(21xxx整理,得:整理,得:5x2+6x-8=0 解得:解得:x1=0.8m,x2=-2(不合题意(不合题意,舍去)舍去)上口宽为上口宽为2.8m

15、,渠底为,渠底为1.2m(天)25487501.6(2)答:渠道的上口宽与渠底深各是答:渠道的上口宽与渠底深各是2.8m和和1.2m;需要需要25天才能挖完渠道天才能挖完渠道例:如图,已知直线例:如图,已知直线AC的解析式的解析式 ,点点P从从A点开始沿点开始沿AO边向点边向点O以以1个单位个单位/秒的速度秒的速度移动,点移动,点Q从从O点开始沿点开始沿OC向点向点C以以2个单位个单位/秒的秒的速度移动,如果速度移动,如果P、Q两点分别从两点分别从A、O同时出发,同时出发,经几秒钟,能使经几秒钟,能使PQO的面积为的面积为8个平方单位。个平方单位。834xyACOPQxy1.如图,宽为如图,宽

16、为50cm的矩形图案由的矩形图案由10个全等的小长方形拼成,个全等的小长方形拼成,则每个小长方形的面积为则每个小长方形的面积为【 】A400cm2 B500cm2 C600cm2 D4000cm22. 在一幅长在一幅长80cm,宽,宽50cm的矩形风景画的四周镶一条金的矩形风景画的四周镶一条金色纸边,制成一幅矩形挂图,如图所示,如果要使整个色纸边,制成一幅矩形挂图,如图所示,如果要使整个挂图的面积是挂图的面积是5400cm2,设金色纸边的宽为,设金色纸边的宽为xcm,那么,那么x满足的方程是满足的方程是【 】Ax2+130 x-1400=0 Bx2+65x-350=0Cx2-130 x-140

17、0=0 Dx2-65x-350=03.如图,面积为如图,面积为30m2的正方形的四个角是面积为的正方形的四个角是面积为2m2的小正的小正方形,用计算器求得方形,用计算器求得a的长为(保留的长为(保留3个有效数字)个有效数字)【 】A2.70m B2.66m C2.65m D2.60m80cmxxxx50cmaAB C问问(1)P、Q两点从出发开始几秒时两点从出发开始几秒时,四边形四边形PBCQ的面积是的面积是33c例例5 如图如图,已知已知A、B、C、D为矩为矩形的四个顶点形的四个顶点,AB=16,AD=6,动动点点P、Q分别从点分别从点A、C同时出发同时出发,点点P以以3/s的速度向点的速度

18、向点B移动移动,一直到点一直到点B为止为止,点点Q以以2/s的速度向点的速度向点D移动移动. APDQBC(2)P、Q两点从出发开始几秒时两点从出发开始几秒时,点点P点点Q间的距离是间的距离是10例例. (2003年年,舟山舟山)如图,有长为如图,有长为24米的篱笆,一面米的篱笆,一面利用墙(墙的最大可用长度利用墙(墙的最大可用长度a为为10米),围成中间隔米),围成中间隔有一道篱笆的长方形花圃。设花圃的宽有一道篱笆的长方形花圃。设花圃的宽AB为为x米,米,面积为面积为S米米2,(1)求)求S与与x的关系式的关系式;(2)如果要围成面积为)如果要围成面积为45米米2的花圃,的花圃,AB的长是多少米?的长是多少米?【解析】【解析】(1)(1)设宽设宽ABAB为为x x米,米,则则BCBC为为(24-3x)(24-3x)米,这时面积米,这时面积S=x(24-3x)=-3xS=x(24-3x)=-3x2 2+24x+24x(2)(2)由条件由条件-3x-3x2 2+24x=45+24x=45化为:化为:x x2 2-8x+15=0-8x+15=0解得解得x

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论