高中数列解法_第1页
高中数列解法_第2页
高中数列解法_第3页
高中数列解法_第4页
高中数列解法_第5页
已阅读5页,还剩1页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、1.常用的 基本求和法均对应数列通项的特殊结构特征,分析数列通项公式的特征联想相应的求和方法既是根本,也是关键.2.数列求和实质就是求数列Sn的通项公式,它几乎涵盖了数列中所有的思想策略、方法和技巧,对学生的知识和思维有很高的要求,应充分重视并系统训练.6.5数列的综合应用典例精析题型一函数与数列的综合问题【例1】已知f(x)=logax(a>0且a1),设f(a1),f(a2),f(an)(nN*)是首项为4,公差为2的等差数列.(1)设a是常数,求证:an成等比数列;(2)若bn=anf(an),bn的前n项和是Sn,当a=2时,求Sn.【解析】(1)f(an)=4+(n-1)

2、15;2=2n+2,即logaan=2n+2,所以an=a2n+2,所以anan-1=a2n+2a2n=a2(n2)为定值,所以an为等比数列.(2)bn=anf(an)=a2n+2logaa2n+2=(2n+2)a2n+2,当a=2时,bn=(2n+2) (2)2n+2=(n+1) 2n+2,Sn=223+324+425+(n+1 ) 2n+2,2Sn=224+325+n2n+2+(n+1)2n+3,两式相减得-Sn=223+24+25+2n+2-(n+1)2n+3=16+24(1-2n-1)1-2-(n+1)2n+3,所以Sn=n2n+3.【点拨】本例是数列与函数综合的基本题型之一,特征是

3、以函数为载体构建数列的递推关系,通过由函数的解析式获知数列的通项公式,从而问题得到求解.【变式训练1】设函数f(x)=xm+ax的导函数f(x)=2x+1,则数列1f(n)(nN*)的前n项和是()A.nn+1 B.n+2n+1 C.nn+1 D.n+1n【解析】由f(x)=mxm-1+a=2x+1得m=2,a=1.所以f(x)=x2+x,则1f(n)=1n(n+1)=1n-1n+1.所以Sn=1-12+12-13+13-14+1n-1n+1=1-1n+1=nn+1.故选C.题型二数列模型实际应用问题【例2】某县位于沙漠地带,人与自然长期进行着顽强的斗争,到2009年底全县的绿化率已达30%,

4、从2010年开始,每年将出现这样的局面:原有沙漠面积的16%将被绿化,与此同时,由于各种原因,原有绿化面积的4%又被沙化.(1)设全县面积为1,2009年底绿化面积为a1=310,经过n年绿化面积为an+1,求证:an+1=45an+425;(2)至少需要多少年(取整数)的努力,才能使全县的绿化率达到60%?【解析】(1)证明:由已知可得an 确定后,an+1可表示为an+1=an(1-4%)+(1-an)16%,即an+1=80%an+16%=45an+425.(2)由an+1=45an+425有,an+1-45=45(an-45),又a1-45=-120,所以an+1-45=-12(45)

5、n,即an+1=45-12(45)n,若an+135,则有45-12(45)n35,即(45)n-112,(n-1)lg 45-lg 2,(n-1)(2lg 2-lg 5)-lg 2,即(n-1)(3lg 2-1)-lg 2,所以n1+lg 21-3lg 2>4,nN*,所以n取最小整数为5,故至少需要经过5年的努力,才能使全县的绿化率达到60%.【点拨】解决此类问题的关键是如何把实际问题转化为数学问题,通过反复读题,列出有关信息,转化为数列的有关问题.【变式训练2】规定一机器狗每秒钟只能前进或后退一步,现程序设计师让机器狗以“前进3步,然后再后退2步”的规律进行移动.如果将此机器狗放在

6、数轴的原点,面向正方向,以1步的距离为1单位长移动,令P(n)表示第n秒时机器狗所在的位置坐标,且P(0)=0,则下列结论中错误的是()A.P(2 006)=402 B.P(2 007)= 403C.P(2 008)=404 D.P(2 009)=405【解析】考查数列的应用.构造数列Pn,由题知P(0)=0,P(5)=1,P(10)=2,P(15)=3.所以P(2 005)=401,P(2 006)=401+1=402,P(2 007)=401+1+1=403,P(2 008)=401+3=404,P(2 009)=404-1=403.故D错.题型三数列中的探索性问题【例3】an,bn为两个

7、数列,点M(1,2),An(2,an),Bn(n-1n,2n)为直角坐标平面上的点.(1)对nN*,若点M,An,Bn在同一直线上,求数列an的通项公式;(2)若数列bn满足log2Cn=a1b1+a2b2+anbna1+a2+an,其中Cn是第三项为8,公比为4的等比数列,求证:点列(1,b1),(2,b2),(n,bn)在同一直线上,并求此直线方程.【解析】(1)由an-22-1=2n-2n-1n-1,得an=2n.(2)由已知有Cn=22n-3,由log2Cn的表达式可知:2(b1+2b2+nbn)=n(n+1)(2n-3),所以2b1+2b2+(n-1)bn-1=(n-1)n(2n-5

8、).-得bn=3n-4,所以bn为等差数列.故点列(1,b1),(2,b2),(n,bn)共线,直线方程为y=3x-4.【变式训练3】已知等差数列an的首项a1及公差d都是整数,前n项和为Sn(nN*).若a1>1,a4>3,S39,则通项公式an=.【解析】本题考查二元一次不等式的整数解以及等差数列的通项公式.由a1>1,a4>3,S39得令x=a1,y=d得在平面直角坐标系中画出可行域如图所示.符合要求的整数点只有(2,1),即a1=2,d=1.所以an=2+n-1=n+1.故答案填n+1.总结提高1.数列模型应用问题的求解策略(1)认真审题,准确理解题意;(2)依据问题情境,构造等差、等比数列,然后应用通项公式、前n项和公式以及性质求解,或通过探索、归纳构造递推数列求解;(3)验证、反思结果与实际是否相符.2.数列综合问题的求解策略(1)数列与函数综合问题或应用数学思想解决数列问题,或

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论