




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、一元二次不等式解法(1)主讲人:贾国富问题问题1.一次函数一次函数y= axb (a0)的图象是什么?的图象是什么?2.二次函数二次函数 y= ax2bxc (a0)的图象是什的图象是什么?么? 答案答案1.一次函数一次函数y= axb (a0)的图象是的图象是一条直线一条直线;;2.二次函数二次函数 y= ax2bxc (a0)的图象是的图象是一条抛一条抛物线。物线。 一元二次不等式的解法一元二次不等式的解法y=2x7 其部分对应值表 x 2 25 3 35 4 45 5 y 3 2 1 0 1 2 3 由对应值表描点可得出图象 y o 3.5 x 由左边的图象填空: 当 x=3.5 时,y
2、 0, 即 2x7 0; 当 x3.5 时,y 0, 即 2x7 0; y o 3.5 x 由左边的图象填空: 当x=3.5 时,y 0,即2x7 0; 当x3.5 时,y 0, 即2x7 0; = 一元一次不等式可用图象法求解一元一次不等式可用图象法求解 方程的解即函数图象与方程的解即函数图象与x轴轴交点的横标,不等式的解集即交点的横标,不等式的解集即函数图象在函数图象在x轴下方或上方图轴下方或上方图象所对应象所对应x的范围。的范围。 一元一次方程、一元一次不等式与一次函数的关系:y=x2x6 其对应值表其对应值表 x 3 2 1 0 1 2 3 4 y 6 0 4 6 6 4 0 6 由对
3、应值表描点可得出图象由对应值表描点可得出图象 y 由左边的图象填空:由左边的图象填空: 2 o 3 x 当当 x=2 或或 x=3 时,时,y 0,即,即 x2x6 0, 当当 x 3 时,时,y 0,即,即 x2x6 0 -6 当当2 x 3 时,时, y 0,即,即 x2x6 0。 用用描描点点可可得得出出图图象象 y 由由图图象象填填空空: 当当 x=2 或或 x=3 时时,y 0,即即 x2x6 0 0, -2 o 3 x 当当 x 3 3 时时,y y 0,即即 x2x6 0, 当当2 x y 由左边的图象填空:由左边的图象填空: 方程方程 x2x6=0 的解为的解为 ; -2 o
4、3 x 不等式不等式 x2x6 0 的解集为的解集为 ; 不等式不等式 x2x6 0 的解集为的解集为 。 -6 X=-2或或x=3x| |x 3x| -2| -2x 3问:问:方程方程ax2bxc=0、 不等式不等式ax2bxc 0与函数与函数y= ax2bxc的图象有什么关的图象有什么关系?系?方程的解即函数图象与方程的解即函数图象与x轴交轴交点的横标,不等式的解集即函点的横标,不等式的解集即函数图象在数图象在x轴下方或上方图象轴下方或上方图象所对应所对应x的范围。的范围。 方程的解即函数图象与方程的解即函数图象与x轴交点的轴交点的横标,不等式的解集即函数图象在横标,不等式的解集即函数图象
5、在x轴下方或上方图象所对应轴下方或上方图象所对应x的范围。的范围。 利用二次函数图象能解一元二利用二次函数图象能解一元二次不等式次不等式! 问:问:y= ax2bxc(a 0)与与x轴轴的交点情况有哪几种?的交点情况有哪几种? 0 =0 0) 0 = =0 0 ax2bxc 0) 0 = =0 0 x| |x x2 x|x|xab2 R ax2bxc 0 x| |x 1 x 0; 3x26x 2; 4x24x1 0;1.1.x2 2x3 0。 例例1.解不等式解不等式 2x23x2 0 .解解:因为因为 0,0,方程的解方程的解2x23x2 的解是的解是.2,2111xx所以所以,不等式的解集
6、是不等式的解集是.2,21|xxx或2x23x2 02,21|xxx或2x23x2 0221x-232x23x2 0221x2x23x2 0利用一元二次函数图象解一元二次不等式其方法步骤是其方法步骤是: :先求出和相应方程的解,再画出函数图象,根据图象写出不等式的解。若若a0a 2略解略解: 3x26x 23x26x2 0 解解:因为 = =0,0,方程方程4x24x1 =0的解是的解是,2121 xx所以所以,原不等式的解集是原不等式的解集是21| xx4x24x1 0 略解略解: x2 2x3 0 x2 - -2x+ +3 0Rx课堂练习课堂练习课本课本P20.1、2、3 练习练习 课本课本P20.1、2、3 (1) ,231| xx(2) , 2132|xxx或(3) 2 . (1)03232yxx时,或当03232时,当yx (2)03232时,或当yxx(3)3. 34|xxx或利用一元二次函数图象解一元二次不等式其方法步骤是其方法步骤是: :先求出和相应方程的解,再画出函数图象,根据图象写出不等式的解。若若a0a0时时, ,先变形先变形! !课后:课后:(1) 作业作业 P21.习题习题1.5 1、3、5;(2) 归纳一元一次不等式的解集;归纳一元一次不等式的解集;(3) 预
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- T/CSBME 055-2022血液透析器中双酚A(BPA)溶出量的测定方法气相色谱-质谱联用法
- T/CIE 188-2023家庭服务机器人视觉功能规范
- T/CI 218-2023压缩空气储能电站选点规划技术规程
- T/CGCC 35-2019单用途商业预付卡卡片规范
- T/CECS 10301-2023硅烷改性聚醚灌浆材料
- T/CECS 10227-2022绿色建材评价屋面绿化材料
- T/CECS 10141-2021装配式支吊架认证通用技术要求
- T/CCT 017-2024中低温煤焦油
- T/CCOA 22-2020食用鸡油
- T/CCMS 002-2024救援器材车试验方法
- 建筑集团公司商务管理手册(投标、合同、采购)分册
- 苏教版二年级下册《磁铁的磁力》课件
- 幼儿园课件小小银行家
- 美的空调制造工艺手册
- 会议实务之收集与会人员对会议的意见和建议
- 大班社会教案看不见的世界教案及教学反思
- 《企业经营盈利能力分析-以蓝帆医疗为例(论文)》8700字
- 国际货运代理的责任与责任风险防范
- 机械制造技术基础课程设计讲课用
- 胎盘早剥应急预案演练脚本
- 保障性租赁住房申请表
评论
0/150
提交评论