



下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、教学设计圆和圆的位置关系寿山中学 张凤洋 圆和圆的位置关系 执教者:张凤洋 时间:2013年10月20日教学目标(一)教学知识点1经历探索圆与圆的位置关系,培养学生的探究能力;2了解圆与圆之间的几种位置关系;3了解两圆外切、内切与两圆圆心距d、半径R和r的数量关系的联系(二)能力训练要求1经历探索两个圆之间位置关系的过程,训练学生的探索能力2通过平移实验直观地探索圆和圆的位置关系,发展学生的识图能力和动手操作能力(三)情感与价值观要求1通过探索圆和圆的位置关系,体验数学活动充满着探索与创造,感受数学的严谨性以及数学结论的确定性2经历探究图形的位置关系,丰富对现实空间及图形的认识,发展形象思维(
2、四)教学重点与难点:重点:探索圆与圆之间几种位置关系,了解两圆外切、内切与两圆圆心距d、半径R和r的数量关系的联系难点:探索两个圆之间的位置关系,以及外切、内切时两圆圆心距d、半径R和r的数量关系的过程(五)教学方法:教师讲解与学生合作交流探索法(六)教具准备:两张较透明的纸或准备一元和五角的硬币。教学过程创设问题情境,引入新课师我们已经研究过点和圆的位置关系,分别为点在圆内、点在圆上、点在圆外三种;还探究了直线和圆的位置关系,分别为相离、相切、相交它们的位置关系都有三种今天我们要学习的内容是圆和圆的位置关系,那么结果是不是也是三种呢?没有调查就没有发言权下面我们就来进行有关探讨新课讲解一、想
3、一想大家思考一下,在现实生活中你见过两个圆的哪些位置关系呢?(如自行车的两个车轮间的位置关系;车轮轮胎的两个边界圆间的位置关系;用一只手拿住大小两个圆环时两个圆环间的位置关系等)二、探索圆和圆的位置关系动手演示两枚硬币之间的位置关系或在一张透明纸上作一个O再在另一张透明纸上作一个与O1半径不等的O2把两张透明纸叠在一起,固定O1,平移O2,O1与O2有几种位置关系?(请大家先自己动手操作,总结出不同的位置关系,然后互相交流)总结出共有五种位置关系,如下图:提示:从公共点的个数和一个圆上的点在另一个圆的内部还是外部来考虑 (1)外离:两个圆没有公共点,并且每一个圆上的点都在另一个圆的外部; (2
4、)外切:两个圆有唯一公共点,除公共点外一个圆上的点都在另一个圆的外部; (3)相交:两个圆有两个公共点,一个圆上的点有的在另一个圆的外部,有的在另一个圆的内部; (4)内切:两个圆有一个公共点,除公共点外,O2上的点在O1的内部; (5)内含:两个圆没有公共点,O2上的点都在O1的内部问题:如果只从公共点的个数来考虑,上面的五种位置关系中有相同类型吗?(外离和内含都没有公共点;外切和内切都有一个公共点;相交有两个公共点。)从公共点的个数来考虑,可分为相离、相切、相交三种总结如下(设两圆的半径分别为R和r,两圆圆心之间的距离(简称圆心距)d)则:两圆外切 dR+r; 两圆内切 dR-r (Rr)
5、; 两圆外离 dR+r; 两圆内含 dR-r(Rr); 两圆相交 R-rdR+r 说明:注重“数形结合”思想的教学 三、例题讲解 P100页例题3.如图,O的半径为5厘米,点P是O外一点,OP=8厘米,求:(1)以P为圆心作P与O外切,小圆P的半径是多少? (2)以P为圆心作P与O内切,大圆P的半径是多少?解:(1)设P与O外切与点A,则 PA=PO-OA PA=3cm (2)设P与O内切与点B,则 PB=PO+OB PB=13cm 四、思考:(机动问题)如图(1),O1与O2外切,这个图是轴对称图形吗?如果是,它的对称轴是什么?切点与对称轴有什么位置关系?如果O1与O2内切呢?如
6、右图师我们知道圆是轴对称图形,对称轴是任一直径所在的直线,两个圆是否也组成一个轴对称图形呢?这就要看切点T是否在连接两个圆心的直线上,下面我们用反证法来证明反证法的步骤有三步:第一步是假设结论不成立;第二步是根据假设推出和已知条件或定理相矛盾的结论;第三步是证明假设错误,则原来的结论成立(说明:在这里应简要说明,只要学生动手画出后得出结论即可)证明:假设切点T不在O1O2上因为圆是轴对称图形,所以T关于O1O2的对称点T也是两圆的公共点,这与已知条件O1和O2相切矛盾,因此假设不成立则T在O1O2上由此可知图(1)是轴对称图形,对称轴是两圆的连心线,切点与对称轴的位置关系是切点在对称轴上在图(2)中应有同样的结论通过上面的讨论,我们可以得出结论:两圆相内切或外切时,两圆的连心线一定经过切点,图(1)和图(2)都是轴对称图形,对称轴是它们的连心线课堂练习:课后 练习1、2、3、4.(五)小结知识:两圆的五种位置关系:外离、外切、相交、内切、内含;以及这五种位置关系下圆心距和两圆半径的数量关系; 两圆相切时切点在连心线上的性质能力:观察、分析、分类、数形结合等能力思想方法:分类思想、数形结合思想。 作业: 复习巩固 .第4题 ; 课后.第7、13题板书设计
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 高校安全警示教育课件
- 新疆生产建设兵团兴新职业技术学院《环境工程基础实验》2023-2024学年第二学期期末试卷
- 南京旅游职业学院《香料化学》2023-2024学年第二学期期末试卷
- 日照市岚山区2025届数学五下期末联考模拟试题含答案
- 内蒙古自治区乌海市第三中学2025届初三3月份月考试卷数学试题含解析
- 吉林省松原市高中2025届高三第四次模拟物理试题含解析
- 江苏省百校大联考2024-2025学年高考历史试题原创模拟卷(八)含解析
- 柳州职业技术学院《柔力球》2023-2024学年第一学期期末试卷
- 西京学院《植物学实验》2023-2024学年第一学期期末试卷
- 通辽市重点中学2024-2025学年初三下学期实验班第二次月考数学试题含解析
- 七下9《木兰诗》一轮复习检测小卷(附答案)
- 综采工作面乳化液泵检修工技能理论考试题库150题(含答案)
- 26 跨学科实践“制作能升空的飞机模型”(教学设计)2024-2025学年初中物理项目化课程案例
- 数控刀片合金知识
- 2025届上海市(春秋考)高考英语考纲词汇对照表清单
- 内蒙古赤峰市松山区2023-2024学年八年级下学期期中考试数学试卷(含答案)
- 大型设备吊装地基处理方案
- 2025年公开招聘卫生系统工作人员历年管理单位笔试遴选500模拟题附带答案详解
- 智能垃圾桶产品介绍
- 2025深圳劳动合同下载
- 建筑工地住房安全协议书(2篇)
评论
0/150
提交评论