



下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、精选优质文档-倾情为你奉上阅读材料:平面向量中的三角形“四心”问题在三角形中,“四心”是一组特殊的点,它们的向量表达形式具有许多重要的性质,在近年高考试题中,总会出现一些新颖别致的问题,不仅考查了向量等知识点,而且培养了考生分析问题、解决问题的能力现就“四心”作如下介绍:1“四心”的概念与性质(1)重心:三角形三条中线的交点叫重心它到三角形顶点距离与该点到对边中点距离之比为21.在向量表达形式中,设点G是ABC所在平面内的一点,则当点G是ABC的重心时,有0或()(其中P为平面内任意一点)反之,若0,则点G是ABC的重心在向量的坐标表示中,若G,A,B,C分别是三角形的重心和三个顶点,且分别为
2、G(x,y),A(x1,y1),B(x2,y2),C(x3,y3),则有x,y.(2)垂心:三角形三条高线的交点叫垂心它与顶点的连线垂直于对边在向量表达形式中,若H是ABC的垂心,则···或222222.反之,若···,则H是ABC的垂心(3)内心:三角形三条内角平分线的交点叫内心内心就是三角形内切圆的圆心,它到三角形三边的距离相等在向量表达形式中,若点I是ABC的内心,则有|·|·|·0.反之,若|·|·|·0,则点I是ABC的内心(4)外心:三角形三条边的中垂线的交点叫外
3、心外心就是三角形外接圆的圆心,它到三角形的三个顶点的距离相等在向量表达形式中,若点O是ABC的外心,则()·()·()·0或|.反之,若|,则点O是ABC的外心2关于“四心”的典型例题例1已知O是平面上的一定点,A,B,C是平面上不共线的三个动点,若动点P满足(),(0,),则点P的轨迹一定通过ABC的_心解析由原等式,得(),即(),根据平行四边形法则,知是ABC的中线所对应向量的2倍,所以点P的轨迹必过ABC的重心 点评探求动点轨迹经过某点,只要确定其轨迹与三角形中的哪些特殊线段所在直线重合,这可从已知等式出发,利用向量的线性运算法则进行运算得之例2已知ABC
4、内一点O满足关系230,试求SBOCSCOASAOB 之值解延长OB至B1,使BB1OB,延长OC至C1,使CC12OC,连接AB1,AC1,B1C1,如图所示,则2,3,由条件,得0,所以点O是AB1C1的重心从而SB1OC1SC1OASAOB1S,其中S表示AB1C1的面积,所以SCOAS,SAOBS,SBOCSB1OC×SB1OC1S.于是SBOCSCOASAOB123.点评本题条件230与三角形的重心性质0十分类似,因此我们通过添加辅助线,构造一个三角形,使点O成为辅助三角形的重心,而三角形的重心与顶点的连线将三角形的面积三等分,从而可求三部分的面积比引申推广已知ABC内一点
5、O满足关系1230,则SBOCSCOASAOB123.例3求证:ABC的垂心H、重心G、外心O三点共线,且|HG|2|GO|.证明对于ABC的重心G,易知,对于ABC的垂心H,设m(),则m()(m1) mm.由·0,得(m1) mm()0,(m1) ·()m(22)0,因为|,所以(m1) ·()0.但与不一定垂直,所以只有当m1时,上式恒成立所以,从而,得垂心H、重心G、外心O三点共线,且|2|.引申推广重心G与垂心H的关系:()点评这是著名的欧拉线,提示了三角形的“四心”之间的关系我们选择恰当的基底向量来表示它们,当然最佳的向量是含顶点A、B、C的向量例4设
6、A1,A2,A3,A4,A5 是平面内给定的5个不同点,则使0成立的点M的个数为()A0B1C5D10解析根据三角形中的“四心”知识,可知在ABC中满足0的点只有重心一点,利用类比的数学思想,可知满足本题条件的点也只有1个 点评本题以向量为载体,考查了类比与化归,归纳与猜想等数学思想本题的详细解答过程如下:对于空间两点A,B来说,满足0的点M是线段AB的中点;对于空间三点A,B,C来说,满足0,可认为是先取AB的中点G,再连接CG,在CG上取点M,使MC2MG,则M满足条件,且唯一;对于空间四点A,B,C,D来说,满足0,可先取ABC的重心G,再连接GD,在GD上取点M,使DM3MG,则M满足条件,且唯
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 体育赛事疫情防控措施方案
- 文化传承主题班会活动计划
- 物业管理敬老文明号服务指南
- 法律事务委托代理合同
- 2025-2030中国男士内裤行业市场发展分析及发展前景与投资研究报告
- 医疗器械供应链风险管理计划
- 2025-2030中国物业管理行业市场发展现状及竞争格局与投资前景研究报告
- 2025-2030中国煤电行业前景规划建议与运行走势分析研究报告
- 教育项目管理实习报告模板范文
- 2025年调酒师职业资格考试模拟试题:饮品成本控制篇
- 锯床工考试试题及答案
- “皖南八校”2024-2025学年高一第二学期期中考试-生物(乙)及答案
- 血站安全与卫生培训课件
- 人教版四年级数学下册期中期中测试卷(提优卷)(含答案)
- 岩土真实考试题及答案
- 高考前的“加速度”高三下学期期中家长会
- 毕业设计(论文)-板材码垛机器人机械结构设计
- 销售人员合同范文
- 网络安全教育主题班会
- 大部分分校:地域文化形考任务三-国开(CQ)-国开期末复习资料
- 2024年全国中学生生物学联赛试题含答案
评论
0/150
提交评论