




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、抽象函数常见题型解法综述赵春祥抽象函数是指没有给出函数的具体解析式,只给出了一些体现函数特征的式子的一类函数。由于抽象函数表现形式的抽象性,使得这类问题成为函数内容的难点之一。本文就抽象函数常见题型及解法评析如下:一、定义域问题例1. 已知函数的定义域是1,2,求f(x)的定义域。解:的定义域是1,2,是指,所以中的满足从而函数f(x)的定义域是1,4评析:一般地,已知函数的定义域是A,求f(x)的定义域问题,相当于已知中x的取值范围为A,据此求的值域问题。例2. 已知函数的定义域是,求函数的定义域。解:的定义域是,意思是凡被f作用的对象都在中,由此可得所以函数的定义域是评析:这类问题的一般形
2、式是:已知函数f(x)的定义域是A,求函数的定义域。正确理解函数符号及其定义域的含义是求解此类问题的关键。这类问题实质上相当于已知的值域B,且,据此求x的取值范围。例2和例1形式上正相反。二、求值问题例3. 已知定义域为的函数f(x),同时满足下列条件:;,求f(3),f(9)的值。解:取,得因为,所以又取得评析:通过观察已知与未知的联系,巧妙地赋值,取,这样便把已知条件与欲求的f(3)沟通了起来。赋值法是解此类问题的常用技巧。三、值域问题例4. 设函数f(x)定义于实数集上,对于任意实数x、y,总成立,且存在,使得,求函数的值域。解:令,得,即有或。若,则,对任意均成立,这与存在实数,使得成
3、立矛盾,故,必有。由于对任意均成立,因此,对任意,有下面来证明,对任意设存在,使得,则这与上面已证的矛盾,因此,对任意所以评析:在处理抽象函数的问题时,往往需要对某些变量进行适当的赋值,这是一般向特殊转化的必要手段。四、解析式问题例5. 设对满足的所有实数x,函数满足,求f(x)的解析式。解:在中以代换其中x,得:再在(1)中以代换x,得化简得:评析:如果把x和分别看作两个变量,怎样实现由两个变量向一个变量的转化是解题关键。通常情况下,给某些变量适当赋值,使之在关系中“消失”,进而保留一个变量,是实现这种转化的重要策略。五、单调性问题例6. 设f(x)定义于实数集上,当时,且对于任意实数x、y
4、,有,求证:在R上为增函数。证明:在中取,得若,令,则,与矛盾所以,即有当时,;当时,而所以又当时,所以对任意,恒有设,则所以所以在R上为增函数。评析:一般地,抽象函数所满足的关系式,应看作给定的运算法则,则变量的赋值或变量及数值的分解与组合都应尽量与已知式或所给关系式及所求的结果相关联。六、奇偶性问题例7. 已知函数对任意不等于零的实数都有,试判断函数f(x)的奇偶性。解:取得:,所以又取得:,所以再取则,即因为为非零函数,所以为偶函数。七、对称性问题例8. 已知函数满足,求的值。解:已知式即在对称关系式中取,所以函数的图象关于点(0,2002)对称。根据原函数与其反函数的关系,知函数的图象
5、关于点(2002,0)对称。所以将上式中的x用代换,得评析:这是同一个函数图象关于点成中心对称问题,在解题中使用了下述命题:设a、b均为常数,函数对一切实数x都满足,则函数的图象关于点(a,b)成中心对称图形。八、网络综合问题例9. 定义在R上的函数f(x)满足:对任意实数m,n,总有,且当x>0时,0<f(x)<1。(1)判断f(x)的单调性;(2)设,若,试确定a的取值范围。解:(1)在中,令,得,因为,所以。在中,令因为当时,所以当时而所以又当x=0时,所以,综上可知,对于任意,均有。设,则所以所以在R上为减函数。(2)由于函数y=f(x)在R上为减函数,所以即有又,根据函数的单调性,有由,所以直线与圆面无公共点。因此有,解得。评析:(1)要讨论函数的单调性必然涉及到两个问题:一是f
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 广州民航职业技术学院《商务沟通综合能力训练》2023-2024学年第二学期期末试卷
- 盐城工学院《应用英语写作》2023-2024学年第二学期期末试卷
- 云南机电职业技术学院《字体设计》2023-2024学年第二学期期末试卷
- 西安理工大学《和声学(1)》2023-2024学年第二学期期末试卷
- 湖南第一师范学院《工程监理与建设法规》2023-2024学年第二学期期末试卷
- 石家庄铁道大学《英语视听说三》2023-2024学年第二学期期末试卷
- 浙江商业职业技术学院《高尔夫》2023-2024学年第二学期期末试卷
- 河北环境工程学院《苗木繁育技术理论》2023-2024学年第二学期期末试卷
- 汝州职业技术学院《基本运动技能》2023-2024学年第二学期期末试卷
- 宿迁学院《社会医学》2023-2024学年第二学期期末试卷
- 2024年杭州市萧山区机关事业单位招聘真题
- 北京经济技术开发区教育领域招聘聘任制教师笔试真题2024
- 2025高考英语解析及其范文
- 2025年6月8日北京市事业单位面试真题及答案解析(下午卷)
- 人力资源测评期末考试试题及答案
- 四川省眉山市东坡区苏辙中学2025年七下英语期末质量跟踪监视试题含答案
- 2024年贵州省粮食储备集团有限公司招聘真题
- 2025年广告创意与传播策略课程期末试卷及答案
- 房屋市政工程生产安全重大事故隐患判定标准(2024版)培训课件
- 电子产品仓库管理制度与流程
- 美丽乡村建设项目可行性分析报告
评论
0/150
提交评论