人工神经网络法预测时用水量(1)(精)_第1页
人工神经网络法预测时用水量(1)(精)_第2页
免费预览已结束,剩余2页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、人工神经网络法预测时用水量(1)摘要:根据城市时段用水量序列的 季节性、趋势性及随机扰动性等特点,利用人工神经网络(ann)法建立了短期用 水量预报模型,并采用某市时用水量的实测数据进行了建模和时用水量预测, 通过与时间序列三角函数分析法、灰色系统理论预测法、小波分析法的预测结 果相比较,证实该法具有预测误差小和计算速度快的特点,可满足供水系统调 度的实际需要。关键词:神经网络 时用水量 预测bp算法目前,国内外用于城市用水量短期预测的方法多为时间序列分析法并采用 多种预测模型,但都存在计算比较复杂、费时、预测精度较差等问题。现通过对时用水量变化规律的研究,提出以神经网络法预测城市短期用水 量

2、。1城市供水管网用水量变化规律在我国城市供水系统中,用水量一般包括居民生活用水、工矿企业);企 业生产用水和公共事业用水等。同一城市在一天内的不同时段,用水量会发生 显著变化。虽然城市用水量的变化受气候、生活习惯、生产和生活条件等诸多因素的 影响,变化情况也较为复杂,但通过分析不难发现:城市用水量曲线呈现三个 周期性的变化,即:一天(24h)为一个周期、一星期(7d)为一个周期、一年(365d)为一个周期,并受增长因素(人口增长,生产发展)的影响。若将预测时 段取为1h,则季节因素和增长因素的影响就显得十分缓慢,因此管网时用水量的变化具有两个重要特征:随机性和周期性。2人工神经网络模型采用目前

3、应用最广泛的多层前馈神经网络模型(bp模型)来预测用水量。bp网络由输入层、输出层及隐含层组成,隐含层可有一个或多个,每层由若干个 神经元组成。最基本的三层bp神经网络的结构如图1所示。隐含单元与输入单 元之间、输出单元与隐含单元之间通过相应的传递强度逐个相互联结,用来模 拟神经细胞之间的相互联结14。bp神经网络采用误差反馈学习算法,其学习过程由正向传播(网络正算)和 反向传播(误差反馈)两部分组成。在正向传播过程中,输入信息经隐含单元逐层处理并传向输出层,如果输出层不能得到期望的输出,则转入反向传播过 程,将实际值与网络输出之间的误差沿原来的联结通路返回,通过修改各层神 经元的联系权值而使

4、误差减小,然后再转入正向传播过程,反复迭代,直到误 差小于给定的值为止。假设bp网络每层有n个处理单元,训练集包括m个样本模式对(xk,yk)。对第p个训练样本p,单元j的输入总和记为netpj,输出记为opj, 则:如果任意设置网络初始权值,那么对每个输入模式p,网络输出与期望输出一般总有误差,定义网络误差ep:式中?dpj-对第p个输入模式输出单元j的期望输出可改变网络的各个权重wij以使ep尽可能减小,从而使实际输出值尽量逼 近期望输出值,这实际上是求误差函数的极小值问题,可采用梯度最速下降法 以使权值沿误差函数的负梯度方向改变。bp算法权值修正公式可以表示为:式中?Spj训练误差?t学

5、习次数?n-学习因子?f激发函数的导数?n取值越大则每次权值的改变越剧烈,这可能导致学习过程发生振荡,因 此为了使学习因子的取值足够大而又不致产生振荡,通常在权值修正公式中加 入一个势态项5,得:式中a常数,势态因子a决定上一次学习的权值变化对本次权值新的影响程度。3时用水量预测3.1方法利用bp神经网络预测时用水量分为三大步骤:第一步为训练样本的准备和 归一化,第二步为神经网络的训练,第三步是利用训练后的神经网络对用水量 进行预测6。?由于用水量的数值较大,应对其进行一定的预处理,一般可采用初值化、极值化或等比变换。通过这些变换可有效地缩短神经网络训练时间,从而加快 网络收敛速度。?3.2实

6、例采用华北某市2000年24h用水量的实测数据进行预测。 在应用神经网络预 测模型预测时用水量时,建立了时用水量数据库,共收集了240个样本,每个样本包括24h的时用水量资料。?通过选取不同的输入样本数及不同的隐层单元个数来比较其训练与预测结 果的最大相对误差、均方差、程序运行时间以决定网络的结构。经过比较,最 后决定采用一个隐层、12个隐层单元、24个输出单元的bp网进行训练,训练 过程中均采用24h的时用水量作为输入与输出节点(即opi与opj)。?由于时用水量变化具有趋势性、周期性及随机扰动性的特点,故预测样本 的变化规律将直接影响预测结果的变化趋势,所以在预测时应根据预测对象的 情况,

7、选择适当的样本进行预测 。预测次日24h的时用水量(或某一时刻的用水量)?a.如果这一天处于工作日则选取上一工作日的用水量作为输入样本进行训 练,然后预测次日的时用水量。预测结果见图2,与实际用水量的相对误差为- 0.02%0.01%。b.如果预测日为周末(即周六或周日)则选取前一周(包括上周周末)的实测 数据进行训练以使预测更加准确,预测结果见图3。与实际用水量的相对误差 为-2%1%。预测一个月的时用水量?可以选取上个月的数据进行训练,也可以选取去年或连续几年同月的时用 水量进行预测,不过训练样本数越大、训练时间越长则预测精度越高。预测结 果见图4,与实际用水量的相对误差在1%以内。3.3预测效果比较为了考察神经网络模型对城市时用水量的预测效果,同时采用时间序列三 角函数分析法、灰色系统理论预测法、小波分析法对上述实例进行了预测,结 果表明:时间序列三

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论