初中三大函数_第1页
初中三大函数_第2页
初中三大函数_第3页
初中三大函数_第4页
初中三大函数_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、 函数何谓“函数,函数是一种关系,所谓变量之间的关系,变量常常以字母的方式表现出来,所以说简单点,函数就是字母间的关系。函数难题就是参数的计算,计算就是初中的算理算法,难,难在哪?难在关系的找法,不同题型不同的解法。每一题不同的关系,找到关系就只剩计算。解函数综合题,简单说,找关系、然后计算。初中三大函数+少见的复合函数函数:三要素:x取值范围、解析式、y图象性质:增减性、交点问题、取值范围、分段函数、函数与方程比拟大小、面积问题图形变换:平移特殊性质:如一次函数k、反比例分象限、二次函数的对称性和最值问题一次函数定义:自变量、因变量、整式概念形如y=kx+bk01、我们知道,假设两个有理数的

2、积为1,那么称这两个有理数互为倒数。同样的,当两个实数 与的积是1时,我们仍然称这两个实数互为倒数。1判断与是否互为倒数,并说明理由;2假设实数是的倒数,求点x,y)中纵坐标随横坐标变化的函数解析式,并画出函数图象图像性质:1、 画图:两点法列表、描点、连线1、函数,求当为何值时:1此函数为一次函数;2此函数为正比例函数2、用描点法画出以下函数图象:(1) y=2x1 (2) y= (3) y= (4) y= 图 象k>0k<0正比例函数b>0b<0b>0b<0一次函数所在象限图象性质:增减性、比拟大小1、点Am1,n1,Bm2,n2,m1<m2在直线

3、y=kx+b上。假设m1 +m2=3b,n1+ n2=kb+4,b>2。试比拟n1和 n2的大小,并说明理由。两条直线关系:平行、相交5、 我们知道,当两条直线公共点时,称这两条直线相交类似地,我们定义:当一条直线与一个正方形有两个 公共点时,称这条直线与这个正方形相交如图,在平面直角坐标系中,正方形OABC的顶点为O(0,0)、 A(1,0)、B(1,1)、C(0,1)1判断直线yx与正方形OABC是否相交,并说明理由;2设d是点O到直线yxb的距离,假设直线yxb与正方形OABC相交,求d的取值范围 与x、y轴交点、交点、比拟大小、分段函数、形成的面积问题1、 直线y=3x2与x轴的

4、交点坐标是 ,与y轴的交点坐标是 ;直线y=x2 与x轴的交点坐标是 ,与y轴的交点坐标是 ;2、一次函数y3xb的图象与两坐标轴围成的三角形面积是24,求b.3、整数满足,对任意一个中的较大值用表示,那么的最小值是 A3 B5 C7 D24、在平面直角坐标系中,函数和函数,不管x取何值,都取与 之间的较小值。求关于x的函数关系式;并画出关于x的图象5、点P是直线y3x1与直线yxb(b0)的交点,直线y3x1与x轴交于点A, 直线yxb与y轴交于点B假设PAB的面积是,求b的值图形变换:平移上加下减2、 特殊性质:3k1、如图,在平面直角坐标系xoy中,A0,2,B0,6,动点C在直线y=x

5、上假设以A、B、C三点为顶点的三角形是等腰三角形,那么点C的个数是( )A2 B3 C4 D5 2、如图,平面直角坐标系中,直线AB与x轴,y轴分别交于A(3,0),B(0,)两点,点C为线段AB上的一动点,过点C作CDx轴于点D。假设,求C点坐标; 反比例函数定义:形如图象性质:1、 画图:3-5点列表、描点、连线增减性、对称性1、菱形的面积为6,写出它的两条对角线长x与y的函数关系,并画出函数图像。2、(1)正比例函数y=k1x(k10)和反比例函数y= (k20)的一个交点为(m,n),那么另一个交点为_.(2)直线(k0)与双曲线交于A(x1,y1),B(x2,y2)两点,那么的值等于

6、_; 2、反比例函数性质【知识要点】k的符号k0k0函数图象(抛物线)x,y取值范围x取值范围:x0y取值范围:y0x取值范围:x0y取值范围:y0位置图象在 象限内图象在 象限内增减性在每一象限内,y随x的增大而 在每一象限内,y随x的增大而 对称性反比例函数的图象是关于原点成中心对称的图形1、(1)点A(a,b)在反比例函数图象上,假设1a2,那么b的范围为 (2)mn=2,假设1m2,那么n的范围为 2、实数a,b满足ab1,a2ab20,当1x2时,函数ya0的最大值与最小值之差是1,求a的值2、 与一次函数综合:交点、比拟大小、面积问题1、直线与双曲线x0,交于点A,与x轴交于点B,

7、那么 。2、一次函数与反比例函数的图象相交于点A,m、B,n.1求一次函数的关系式;2在给定的直角坐标系中画出这两个函数的图象,并根据图象答复:当x为何值时,一次函数的值大于反比例函数的值? 3、 如图,矩形AOBC中,C点的坐标为(4,3),F是BC边上的一个动点不与B,C重合,过F 点的反比例 函数(k>0)的图像与AC边交于点E。(1)假设BF1,求OEF的面积;(2)请探索:是否在这样的点F,使得将CEF沿EF对折后,C点恰好落在OB上?假设存在,求出点k的值;假设不存在,请说明理由 4、点O是平面直角坐标系的原点,直线yxmn与双曲线交于两个不同的点A(m,n) (m2)和B(

8、p,q),直线yxmn与y轴交于点C,求OBC的面积S的取值范围.5、点和点是直线与双曲线的交点.1过点作轴,垂足为,连结.假设,求点的坐标.2假设点在线段上,过点作轴,垂足为,并交双曲线于点.当取最大值时,有,求此时双曲线的解析式.6、双曲线和直线y2x,点C(a,b) (ab2)在第一象限,过点C作x轴的垂线交双曲线于点F,交直线于点B,过点C作y轴垂线交双曲线于点E,交直线于点A(1) 假设b1,那么结论“A、E不能关于直线FB对称是否正确?假设正确,请说明理由;假设不正确,请举反例.(2) 假设CABCFE,设,当1a2,求w的取值范围.4、 特殊性质:k的几何意义,以及xy=k的消参

9、作用1、点A是反比例函数图象上的一点假设垂直于轴,垂足为,那么的面积 2、双曲线在第一象限内的图像如图7所示,作一条平行于y轴的直线分别交双曲线于A、B两点,连接OA、OB,那么AOB的面积为_3、如图,点M是反比例函数(x>0)图象上任意一点,MNy轴于N,点P是x轴上的动点,那么MNP的面积是 A1B2C4D不能确定 A B C D 4、 如图,双曲线经过矩形OABC的边BC的中点E,交AB于点D.假设梯形ODBC的面积为3,那么双 曲线的解析式为( )5、如图14,矩形OABC交双曲线于E、F两点,E是BC的中点,求证:F是AB的中点 6、双曲线k>0,过点Mm,mm>

10、作MAx轴,MBy轴,垂足分别是A和B,MA、MB分别交双曲线k>0于点E、F。1假设k=2,m=3,求直线EF的解析式;2O是坐标原点,连结OF,假设BOF=22.5°,多边形BOAEF的面积是2,求k的值。二次函数定义:图象性质:1、 画图:3-5点含顶点列表、描点、连线增减性、对称性、最值性、与x轴交点、f(1)、f(1)、f(2)、f(2)、f(m);函数开口对称轴顶点最大(小)值 增减性ya(xh)2ka>0,开口向上直线x=h(h,k)当x=h时,y有最小值为k当x<h时,;当x>h时,a<0,开口向下当x=h时,y有最大值为k当x<h

11、时,;当x>h时,yax2bxca>0,开口向上直线(,)当x=时,y有最小值为当x<时,;当x>时,字母字母的符号图象的特征aa > 0开口向上a < 0开口向下bb = 0对称轴为y轴ab同号对称轴在y轴的左边ab异号对称轴在y轴的右边cc = 0经过原点c > 0在x轴的上方与y轴的正半轴相交c < 0在x轴的下方与y轴的负半轴相交 = 0与x轴只有一个交点(顶点在x轴上) > 0与x轴有两个交点 < 0与x轴没有交点与1比拟2a-b与-1比拟令x=1,看纵坐标令x=-1,看纵坐标令x=2,看纵坐标令x=-2,看纵坐标【根本的图

12、象性质和符号判断】1、二次函数yax2+bx+c(a0) 的图象如图1,结合图象填空:a 0,b 0,c 0,b24ac 0,2ab 0,2ab 0,abc 0,abc 0,4a2bc 0,4a2bc 02、二次函数yax2+bx+c的图象如图2所示,试判断以下各式的符号a 0,b 0,c 0,2ab 0,2ab 0,b24ac 0,abc 0,abc 0, 4a2bc 0,4a2bc 0 【对称性、增减性】1、假设二次函数当1时,随的增大而减小,那么的取值范围是 A、=1 B、>1 C、1 D、12、二次函数,假设,y随x增大而减小,那么实数b的取值范围是_;假设 点A 1,c、在这个

13、函数图像上,且,那么实数a的取值范围是_;【函数与方程】1、二次函数(a0) 中,自变量的x与函数y的对应值如下表:x-2-101234ym-2mm-2假设,那么一元二次方程ax2+bx+c=0的两个根x1,x2的取值范围是 A、-1< x1<0,2< x2<3 B、-2< x1< -1,1< x2<2C、0< x1<1,1< x2<2 D、-2< x1< -1,3< x2<4 2、二次函数y=x2xc()一定经过点(, ).3、代数式的值是 .4、一个二次函数的y(xh)2a2(a0),方程(xh

14、)2a210的两根是b,cbc,方程(xh)2a220的两根分别为m,nmn,判断b,c,m,n的大小关系 用“连接【实际问题】1、 汽车刹车后行驶的距离s单位:米与行驶的时间t单位:秒的函数关系是s=,那么汽车刹车 后 停下来2、从地面击出一个小球,如果不考虑空气阻力,小球的飞行时离地面的高度h单位:米与飞行时间单位: 秒之间的函数关系是:h20t5t2,那么小球从飞出到落地要用 秒【取值范围、增减性】1、抛物线yx22x3的开口向_;当2x0时,y的取值范围是_2、实数a,b满足ab1,a2ab10,当1x2时,二次函数yax26ax9a(a0)的最大值与最小值之差是9,求a的值.2、图象

15、平移:左加右减、上加下减1、将抛物线向右平移一个单位长度,再向上平移3个单位长度所得的抛物线的解析式为( ) A. B. C. D. 2、如果将抛物线yx2向右平移1个单位,那么所得的抛物线的表达式是( ) Ayx21 Byx21 Cy(x1)2 Dy(x1)23、与一次函数综合:交点、比拟大小、面积问题、轨迹方程、几何图形存在性问题1、二次函数(a<0)的局部图像如图7所示,抛物线与x轴的一个交点坐标为(3,0),对称轴为直线x=1.1假设a=1,求c-b的值;2假设实数m1,比拟a+b与m(am+b)的大小,并说明理由2、二次函数yx2xc(1)假设点A(1,n)、B(2,2n1)在

16、二次函数yx2xc的图象上,求此二次函数的最小值;(2)假设点D(x1,y1)、E(x2,y2)、P(m,m)(m0)在二次函数yx2xc的图象上,且D、E两点关于坐标原点成中心对称,连接OP当2OP2时,试判断直线DE与抛物线yx2xc的交点个数,并说明理由3、如图1,过ABC的三个顶点分别作出与水平线垂直的三条直线,外侧两条直线之间的距离叫ABC的“水平宽(a),中间的这条直线在ABC内部线段的长度BD叫ABC的“铅垂高(h).我们可得出一种计算三角形面积的新方法:,即三角形面积等于水平宽与铅垂高乘积的一半. 解答以下问题: 如图2,抛物线顶点坐标为点D(1,4),交x轴于点B(3,0),

17、交y轴于点C。在第一象限的抛物线上是否存在一点P,使最大,假设存在,求出P点的坐标;假设不存在,请说明理由. 4、抛物线的顶点A在第一象限,过点A作ABy轴,垂足为B,C是线段AB上一点不与端点A、B重合,过C作CDx轴,垂足为D,并交抛物线于点P。1假设点C1,a是线段AB的中点,求点P的坐标;2假设直线AP交y轴的正半轴于点E,且AC=CP,求OPE的面积S的取值范围。5、抛物线的顶点为D-1,-4,与y轴交于点C0,-3,与x轴交于A,B两点点A在点B的左侧1连接AC,CD,AD,试证明ACD为直角三角形;2假设点E在抛物线的对称轴上,抛物线上是否存在点F,使以A,B,E,F为顶点的四边

18、形为平行四边形?假设存在,求出所有满足条件的点 F的坐标;假设不存在,请说明理由 6、如图,直线yx2与抛物线yax2bx6(a0)相交于A(,)和B(4,m),点P是线段AB上异于A、B 的动点,过点P作PCx轴于点D,交抛物线于点C(1)是否存在这样的P点,使线段PC的长有最大值?假设存在,求出这个最大值;假设不存在,请说明理由;(2)求PAC为直角三角形时点P的坐标 5、 纯参数问题1、假设抛物线ybxc与x轴只有一个交点,且过点Am,n,Bm6,n,那么n .2、abc,且a+b+c=0,那么抛物线与直线y=bx的交点个数有 个.3、假设抛物线yax2+bx+c上有两点A、B关于原点对

19、称,那么称它为“完美抛物线(1) 请猜猜看:抛物线yx2+x1是否是“完美抛物线?假设是,请写出A、B坐标;假设不是,请说明理由;(2) 假设抛物线yax2+bx+c是“完美抛物线,与y轴交于点C,与x轴交于(,0),假设,求直线 AB的解析式.5、X系方程1、 假设x1,x2是关于x的方程x2bxc0的两个实数根,且|x1|x2|2|k| (k是整数),那么称方程x2bxc0为“偶系二次方程.如方程x26x270,x22x80,x23x0,x26x270,x24x40,都是“偶系二次方程. (1)判断方程x2x120是否是“偶系二次方程,并说明理由; (2)对于任意一个整数b,是否存在实数c

20、,使得关于x的方程x2bxc0是“偶系二次方程,并说明理由.2、假设x1,x2是关于x的方程 x2bxc0 的两个实数根,且满足|x1|2|x2|c|2,那么称方程x2bxc0 为“T系二次方程.如方程x22x0,x25x60,x26x160,x24x40 都是T系二次方程。是否存在实数b,使得关于x的方程x2 bxb0 是“T系二次方程,并说明理由.3假设x1,x2是关于x的方程x2bxc0的两实根,且 (k为整数),那么称方程x2bxc0为“B系二次方程,如:x22x30,x22x150, x23x0,x2x0,x22x30,x22x150等,都是“B系二次方程请问:对于任意一个整数b,是否存在实数c,使得关于x的方程x

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论