




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、椭圆的简单性质椭圆的简单性质2学习目标:学习目标:1 1熟悉椭圆的几何性质(对称性,范围,顶熟悉椭圆的几何性质(对称性,范围,顶点,离心率)点,离心率) 2 2理解离心率的大小对椭圆形状的影响理解离心率的大小对椭圆形状的影响 3 3能利用椭圆的几何性质求椭圆的标准方程能利用椭圆的几何性质求椭圆的标准方程3复习:复习:1.椭圆的定义椭圆的定义:平面内到两定点平面内到两定点F1、F2的距离和为常数(大于的距离和为常数(大于|F1F2 |)的点的集合叫做椭圆。的点的集合叫做椭圆。2.椭圆的标准方程是:椭圆的标准方程是:3.椭圆中椭圆中a,b,c的关系是的关系是:a2=b2+c21:54:564椭圆椭
2、圆 简单的几何性质简单的几何性质12222byax一、一、范围:范围: -axa, -byb 知知 椭圆落在椭圆落在x=a,y= b组成的矩形中组成的矩形中, 122 ax得:得:122 by oyB2B1A1A2F1F2cab二二.椭圆的对称性椭圆的对称性YXOP(x,y)P1(-x,y)P2(-x,-y)椭圆的对称性椭圆的对称性22221(0),xyabab在之中 把把(X)换成换成(-X),方程不变方程不变,说明椭圆关于说明椭圆关于( )轴对称;轴对称; 把把(Y)换成换成(-Y),方程不变方程不变,说明椭圆关于说明椭圆关于( )轴对称;轴对称; 把把(X)换成换成(-X), (Y)换成
3、换成(-Y),方程还是不变方程还是不变,说明椭圆关说明椭圆关于于( )对称;对称;中心:椭圆的对称中心叫做椭圆的中心。中心:椭圆的对称中心叫做椭圆的中心。oxy 所以,坐标轴是所以,坐标轴是椭圆的对称轴,原点椭圆的对称轴,原点是椭圆的对称中心。是椭圆的对称中心。Y X 原点原点 三、椭圆的顶点三、椭圆的顶点22221(0),xyabab在中令令 x=0,得,得 y=?,说明椭圆与?,说明椭圆与 y轴的交点(轴的交点( ),), 令令 y=0,得,得 x=?, 说明椭圆与说明椭圆与 x轴的交点(轴的交点( )。)。*顶点顶点:椭圆与它的对称椭圆与它的对称轴的四个交点,叫做椭圆的轴的四个交点,叫做
4、椭圆的顶点。顶点。 oxyB1(0,b)B2(0,-b)A1A2(a,0)0, ba, 0*长轴长轴、短轴短轴: 线段线段A1A2、B1B2分别叫做椭圆的分别叫做椭圆的长轴和短轴。长轴和短轴。a、b分别叫做椭圆的分别叫做椭圆的长半长半轴长轴长和和短半轴长短半轴长。焦点总在长轴上焦点总在长轴上!123-1-2-3-44y123-1-2-3-44y1 2 3 4 5-1-5-2-3-4x1 2 3 4 5-1-5-2-3-4x根据前面所学有关知识画出下列图形根据前面所学有关知识画出下列图形1162522yx142522yx(1)(2)A1 B1 A2 B2 B2 A2 B1 A1 四四、椭圆的离心
5、率椭圆的离心率ace 离心率:离心率:椭圆的焦距与长轴长的比:椭圆的焦距与长轴长的比:叫做椭圆的离心率。叫做椭圆的离心率。1离心率的取值范围:离心率的取值范围:1)e 越接近越接近 1,c 就越接近就越接近 a,从而,从而 b就越小,椭圆就就越小,椭圆就越扁越扁因为因为 a c 0,所以,所以0e 12离心率对椭圆形状的离心率对椭圆形状的影响影响:2)e 越接近越接近 0,c 就越接近就越接近 0,从而,从而 b就越大,椭圆就就越大,椭圆就越圆越圆3) e 与与a,b的关系的关系yOx1:54:5610标准方程图 象范 围对 称 性顶点坐标焦点坐标半 轴 长焦 距a,b,c关系离 心 率222
6、21(0)xyabab|x| a,|y| b|x| b,|y| a关于关于x轴、轴、y轴成轴对称;关于原点成中心对称。轴成轴对称;关于原点成中心对称。( a ,0 ),(0, b)( b ,0 ),(0, a)(c,0)(0, c)长半轴长为长半轴长为a,短半轴长为短半轴长为b.焦距为焦距为2c;a2=b2+c2cea)0( 12222babxay例例1 1、已知椭圆方程为、已知椭圆方程为16x16x2 2+25y+25y2 2=400=400,则,则它的长轴长是它的长轴长是: ;短轴长是短轴长是: ;焦距是焦距是: ;离心率等于离心率等于: ;焦点坐标是焦点坐标是: ;顶点坐标是顶点坐标是:
7、 ; 外切矩形的面积等于外切矩形的面积等于: ; 108635( 3,0)( 5,0)(0, 4)80例例2:2:求适合下列条件的椭圆的标准方程:求适合下列条件的椭圆的标准方程:(1 1)经过点)经过点 、 ;(2 2)长轴长等于)长轴长等于 , ,离心率等于离心率等于 ( 3,0)P (0, 2)Q2035解解: :(1 1)由题意,)由题意, , ,又又长轴在长轴在轴上,所以,椭圆的标准方程为轴上,所以,椭圆的标准方程为 3a 2b x22194xy(2 2)由已知,由已知, , , , ,所以椭圆的标准方程为所以椭圆的标准方程为 或或 220a 35cea10a 6c 22210664b
8、 22110064xy22110064yx例例3.3.已知椭圆的中心在原点,焦点在坐标已知椭圆的中心在原点,焦点在坐标轴上,长轴是短轴的三倍,且椭圆经过点轴上,长轴是短轴的三倍,且椭圆经过点P P(3 3,0 0),求椭圆的方程。),求椭圆的方程。1981192222xyyx或例题例题3 3离心率离心率 e e(1).若椭圆若椭圆 + =1的离心率为的离心率为 0.5,则:,则:k=_82kx92y(2).若某个椭圆的长轴、短轴、焦距依次成等差数列,若某个椭圆的长轴、短轴、焦距依次成等差数列, 则其离心率则其离心率e=_445或53 4求适合下列条件的椭圆的标准方程求适合下列条件的椭圆的标准方程(1) a=6, e= , (1) a=6, e= , 焦点在焦点在x x轴上轴上(2) (2) 离心率离心率 e=0.8, e=0.8, 焦距为焦距为8 8(3) (3) 长轴是短轴的长轴是短轴的2 2倍倍, , 且过点且过点P(2,-6)P(2,-6)311323622yx192519252222xyyx或11352y137y1482222xx或1. 1.基本量基本量: a: a、b b、c c、e e几何意义:
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025重庆发展投资公司及所属企业社会招聘15人笔试参考题库附带答案详解
- 2025广西农村投资集团有限公司校园招聘140人笔试参考题库附带答案详解
- 2025年四川宜宾市高县锦途劳务派遣有限责任公司招聘劳务派遣人员12人笔试参考题库附带答案详解
- 2025山东钢铁集团有限公司高校毕业生招聘笔试参考题库附带答案详解
- 正确合同协议书
- 入股旅游合同协议书
- 纺织品测试方法的试题及答案
- 中俄合同协议书
- 内部拆除合同协议书范本
- 灯具安装合同协议书百度
- 穿孔机作业指导书
- 高等数学同济第七版上册课后习题答案(全套)
- 统考考生本科志愿样表
- 人教鄂教版六年级下册科学全册知识点汇总
- 新航道托福雅思培训班
- 高中-物理 电磁感应现象及应用 说课课件
- 数车实训图纸
- 1小学英语教师面试:听力课SpecialdaysinApril全英文教案及试讲逐字稿
- 人教版小学数学一年级下册期末黄冈测试卷(三)
- 砖砌蓄水池施工方案(模板)
- GB/T 38058-2019民用多旋翼无人机系统试验方法
评论
0/150
提交评论