




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、第二章第二章布林代數與邏輯閘2-1 基本定義基本定義封閉性結合律交換律單位元素 ,則e為單位元素反元素分配律)()(zyxzyxxyyxxexxeeyx)()()(zxyxzyx2-2 布林代數的公理與定義布林代數的公理與定義1.(a)運算符號 + 具有封閉性。 (b)運算符號 具有封閉性。2. (a) + 具有單位元素0: (b) 具有單位元素1: 3. (a) + 具有交換律: (b) 具有交換律: xxx00 xxx11xyyxxyyx布林代數的公理與定義布林代數的公理與定義4.(a) 對 + 具有分配性: (b) + 對 具有分配性: 5.對任一元素 ,則存在一元素 (稱為 的補數),
2、使得(a). 且 (b).6.至少存在兩個元素 ,使得 。 )()()(zxyxzyx)()(zxyxzyxBxBx x1 xx0 xxByx,yx 2-3 2-3 布林代數的基本定理與性質布林代數的基本定理與性質定理1 (a) (b)定理2 (a) (b)定理3 自補定理定理4 結合律 (a) (b) xxxxxx11x00 xxx)(zyxzyx)()(zxyyzx)()(布林代數的基本定理與性質布林代數的基本定理與性質定理5 迪摩根定理 (a) (b) 定理6 消去定理 (a) (b)yxyx )(yxxy )(xxyxxyxx )(Boolean LawsNameAND formOR
3、formIdentity law1A = A0 + A = ANull law0A = 01 + A = 1Idempotent lawAA = AA + A = AInverse lawAA = 0A + A = 1Commutative law AB = BAA + B = B + AAssociative law(AB)C = A(BC)(A+B)+C = A+(B+C)Distributive lawA+BC = (A+B)(A+C)A(B+C) = AB + ACAbsorption lawA(A+B) = AA + AB = ADeMorgans lawAB = A + BA +
4、B = ABWhy do we need boolean laws?These laws allow us to simplify expressions.The has the effect ofMaking the expression smaller and easier to manipulateRemoving redundancy from expressionUsing fewer logic gatesThis usually translates into smaller hardwareHowever, not logic structures cannot take ad
5、vantage of simplificationMay wish to reduce other metric like packagesExamples of application of boolean lawsSimplify the following expression: ABC ABC B (A A)BC B1BC B BC B B(C 1) B2-4 布林函數布林函數布林函數- 包含二元變數、常數值1和0以及邏輯運算符號的代數表示式。布林函數之閘電路圖布林函數布林函數布林函數之閘電路圖重合定理與迪摩根定理重合定理與迪摩根定理重合定理 1. 2.迪摩根定理 1. 2.)()()
6、(zxyxzyzxyxzxxyyzzxxyFCBAFCBA.).(FCBAFABC.).(2-5 正規型式與標準型式正規型式與標準型式正規型式 全及項(minterm)的和與全或項(maxterm)的積標準型式 積項和(Sum of Products) 和項積(Product of Sums)三個二元變數之全及項與全或項三個二元變數之全及項與全或項全及項(minterm)與全或項(maxterm)全及項全或項xyz項目符號項目符號000 xyzm0 x+y+zM0001xyzm1x+y+zM1010 xyzm2x+y+zM2011xyzm3x+y+zM3100 xyzm4x+y+zM4101x
7、yzm5x+y+zM5110 xyzm6x+y+zM6111xyzm7x+y+zM7Truth TablesTruth tables show all possible inputs of a function and the values that the output takes for all those inputs.Given n inputs, there are 2n possible input combinations.Order the rows of the table in increasing order for binary word of n bits.ABCf(
8、A,B,C)00000010010001111000101111011111From Truth Tables to Min Term ExpressionsIt is trivial to convert a truth table to a min term expression.The individual parts of a min term expression (the AND parts) describe when the function will be one.Any one of the and parts will cause the expression to be
9、 true.At all other times the expression is false.Only one AND term can be true for any given input set.Forming min term expressionsABCf(A,B,C)00000010010001111000101111011111Expression is one hereABCABCABCABCM ABC ABC ABC ABCTherefore the following expression totally captures the functionImplementin
10、g this with logicABC BCABCABCABCABCAMDont Care cases in Boolean expressionsABCf(A,B,C)000001000X111000X01111X1Expression is one hereTherefore the following expression totally captures the functionACBCABM AC BC ABImplementing any boolean function1Write down the truth table for the function2Provide in
11、verters to generate the complement of each input3Draw an AND gate for each term with a 1 in the result column4Wire the AND gate to the appropriate input lines5Feed the output of all and gates into an OR gateConvert the following truth table to a boolean expressionABCf(A,B,C)0001001001010110100010101
12、1011111Some examples .ABCf(A,B,C)00010010010101101000101011011111ABC f = Some examples .ABCf(A,B,C)00010010010101101000101011011111ABC ABC f = Some examples .ABCf(A,B,C)00010010010101101000101011011111ABC ABC ABC f = Some examples .ABCf(A,B,C)00010010010101101000101011011111ABC ABC ABC ABCf = Implem
13、ent it with logic devices?Implement it with logic devicesImplement it with logic devicesImplement it with logic devicesABCBACABCCBADesign of logic from Truth Table to NAND gatesABCf(A,B,C)00000011010001111000101111011110ABCFrom Truth Table to NOR gatesABCf(A,B,C)00000011010001111000101111011110ABCSu
14、m-of-Products (Minterms)An expression is on a sum-of-products form if it isformed by the sum of products, and all the products are formed by single variables only.Examples:AB + CDE + ACEABC + DEFG + HA + B + C + DEThe following expressions are not sum-of-products:(A+B)CD + EF(X + Y)(X + Z)Product-of
15、-Sums (Maxterms)Similarly, a product-of-sums is formedby the product of sums in which all thesums are formed by single variables only.Examples:(A + B)(C + D + E)(A + C + E)(A + B)(C + D +E)FABC(D + E)The following expressions are not sum-of-products:(A+B)CD + EFA + B + C + DEMax Term expressionsMin
16、term expressions have terms which describe when the function is true.Oring these terms together means the function becomes true when any of them is trueMax term expressions have terms which describe when a function is falseThese terms are Anded together which means that the expression if false if an
17、y one of the terms is falsef (.)(.)(.)(.)All terms must be trueWhy use Max term expressions?If there are more 0s in the function than 1s, then the Max term expression is smaller.Each term is built as an OR expressionMax term expressions use different gates.Sometimes there are spare gates of a paricu
18、lar type available and these can be usedFrom Truth Table to Max term expressionABCf(A,B,C)00000010010001111000101111011111Expression is false hereTherefore the following expression totally captures the functionA B CA B CA B CA B CM (A B C)(A B C)(A B C)(A B CWhich expressions is smaller?As a Min ter
19、m expression:As a Max term expression:As a complemented Min term expressionABCf(A,B,C)00010011010101111001101111011110M ABCABC ABCABC ABCABC ABCM A B CM ABC M ABCCost of Implementing a Logic CircuitThe cost of implementing a logic circuit is related to the number of gates used and with the number of
20、 inputs in each gate.A literal is a boolean variable or its complement.Cost of Implementing a Logic CircuitThe cost of a boolean equation represented in a sum-of-products form is given by:. of term in the literals ofnumber the torelated is and,in termsofnumber the torelated is ,in termsofnumber thei
21、s where)(th10iijiiikjiijiBjBPBBOBkBOBPBCiBCost of Implementing a Logic Circuit10)(kjiijiBOBPBC term.1 has if 0 terms has if literals 1 has of term theif 0literals has of term theif ththiiiiiijBmBmBOBjmBjmBPCost of a Logic CircuitExamples10)(kjiijiBOBPBC term.1 has if 0 terms has if literals 1 has of
22、 term theif 0literals has of term theif ththiiiiiijBmBmBOBjmBjmBPWhat is the cost of the followingboolean equations?f1(w,x,y,z) = wxyz + wxyzg1(XYZ) = XY + XZ + YZf2(w,x,y,z) = w + x + yz + yzg2(XYZ) = XY + XZh1(a,b) = abh2(a,b) = bC(f1) = 4+4+2=10C(g1) = 2+2+2+3=9C(f2) = 0+0+2+2+4=8C(g2) = 2+2+2=6C(h1) = 2 + 0 = 2C(h
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 初三英语教学课件
- 钣金磨具课件
- 2025年数字货币对货币政策传导机制的国际合作前景研究报告
- 钢铁卷板基础知识培训课件
- 知识产权培训宣讲总结课件
- 2025年电商市场分析面试题及答案
- 潞城知识园教育培训课件
- 2025年宠物摄影摄像师中级模拟试题
- 2025年CISP云计算安全面试题集
- 2025年券商入职测试题库及答案
- JJF 1002-2010国家计量检定规程编写规则
- GB/T 6663.1-2007直热式负温度系数热敏电阻器第1部分:总规范
- GB/T 6344-2008软质泡沫聚合材料拉伸强度和断裂伸长率的测定
- GB/T 3836.4-2021爆炸性环境第4部分:由本质安全型“i”保护的设备
- GA/T 1163-2014人类DNA荧光标记STR分型结果的分析及应用
- 蒸汽发生器设计、制造技术要求
- 全套课件-水利工程管理信息技术
- 施工员钢筋工程知识培训(培训)课件
- 《阿房宫赋》全篇覆盖理解性默写
- 学校体育学(第三版)ppt全套教学课件
- 住建部《建筑业10项新技术(2017版)》解读培训课件
评论
0/150
提交评论