2PSK仿真课程设计--2PSK调制解调器的建模与仿真_第1页
2PSK仿真课程设计--2PSK调制解调器的建模与仿真_第2页
2PSK仿真课程设计--2PSK调制解调器的建模与仿真_第3页
2PSK仿真课程设计--2PSK调制解调器的建模与仿真_第4页
2PSK仿真课程设计--2PSK调制解调器的建模与仿真_第5页
已阅读5页,还剩25页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、课 程 设 计 报 告 书题目 2PSK调制解调器的建模与仿真 姓 名 学 号 专业班级 指导教师 时 间 2021 年 1 月 10 日 课程设计任务书班 级姓 名题 目2PSK调制解调器的建模与仿真设计目的、设计要求课程设计的目的1.通过利用matlab 对数字通信相关内容进行仿真设计,熟悉数字通信的相关理论;2.更好的了解数字通信的相关知识,提高分析问题、查阅资料、自主设计等各方面能力。课程设计的要求1.产生一组20位以上随机二进制数字基带信号双极性;2.产生载波信号,载波周期与码元宽度相同且均为1; 2PSK调制与解调;4.通过巴特沃斯低通滤波器,根据位同步信号进行抽样判决;、误码率并

2、给出仿真结果;设计进度安排或工作方案2021.12.30 2021.12.31: 熟悉课题,查询相关资料,完成方案选择;2021.1.22021.1.6: 设计模块划分、实现及各模块调试、验证;2021.1.72021.1.8:设计整体实现、调试及验证,并开始撰写报告;2021.1.92021.1.10:设计完成,课程设计报告撰写并定稿,上交。其 它认真阅读数字通信课程设计报告撰写标准;课题小组经协商好要指定组长并明确分工,形成良好团队工作气氛;基于课题根本要求,各小组与指导老师讨论,再将课题细化、增加要求;课题小组每个成员均需各自撰写一份课程设计报告。2PSK调制解调器的建模与仿真摘 要数字

3、传输系统中,数字信号对高频载波进行调制,变为频带信号,通过信道传输,在接收端解调后恢复成数字信号,由于大多数实际信号都是带通型的,所以必须先用数字频带信号对载波进行调制,形成数字调制信号再进行传输,因此,调制解调技术是实现现代通信的重要手段。数字调制地实现,促进了通信的飞速开展。研究数字通信调制理论,提供有效调制方法有着重要意义。实现调试解调的方法有很多种,本文应用了键控法产生调制与解调信号。数字相位调制又称相移键控记作PSK(Phase Shift Keying),二进制相移键控记作2PSK,它们是利用载波振荡相位的变化来传送数字信号的,在二进制数字解调中,当正弦载波的相位随二进制数字基带信

4、号离散变化,那么就产生二进制移相键控2PSK信号。重点介绍了2PSK的调制与解调的工作原理,以及通过MATLAB进行设计和仿真,并且分析了各阶段信号的频谱及误码率。关键词 数字调制与解调;2PSK;MATLAB仿真目 录课程设计任务书I摘 要II1 设计概述11.1 设计背景11.2 设计目的11.3 设计内容及要求12 设计原理22.1 2PSK数字调制过程分析22.2 2PSK数字解调过程分析32.3 2PSK相干解调系统性能分析43 设计实现53.1 系统设计框图53.2 M文件下仿真设计思路及过程53.2.1 2PSK调制局部53.2.2 2PSK解调局部63.3 Simulink下的

5、仿真63.3.1 仿真模型建立6参数的设置7仿真结果73.3.4 仿真结果分析84 M文件仿真结果94.1 2PSK调制、解调系统信号波形图94.2 2PSK调制解调系统频谱分析114.3 各阶段功率谱密度分析及误码率13参考文献15附录161 设计概述1.1 设计背景当今社会已经步入信息时代,在各种信息技术中,信息的传输及通信起着支撑作用。而对于信息的传输,数字通信已经成为重要的手段。因此,数字信号的调制就显得非常重要。 数字信号的传输方式分为基带传输和带通传输,在实际应用中,大多数信道具有带通特性而不能直接传输基带信号。为了使数字信号在带通信道中传输,必须使用数字基带信号对载波进行调制,以

6、使信号与信道的特性相匹配。这种用数字基带信号控制载波,把数字基带信号变换为数字带通信号的过程称为数字调制。通常使用键控法来实现数字调制,比方对载波的振幅、频率和相位进行键控。在这三种调制的根底上为了得到更高的效果也出现了很多其他的调制方式,如:DPSK,MASK,MFSK,MPSK,APK。它们其中有的一些是将根本的调制方式用在多进制上或者引入了一些新的方式来解决根本调制的一些问题如相位模糊和无法提取位定时信号,另外一些是由多种根本的调制方式组合来到达更好的效果。数字调制与解调系统性能的好坏取决于传输信号的误码率,而误码率不仅仅与信道、接收方法有关还和发送端所采用的调制方式有很大的关系。我们研

7、究的ASK,FSK,PSK等就主要是发送方的根本调制方式。本设计主要对2PSK信号的原理及其相干解调系统性能进行了分析和仿真,这样能让我们对数字调制方式有一个更清楚的认识。1.2 设计目的2PSK数字调相技术由于其抗干扰能力强,实现简单,而被广泛应用于各种通信中。此题目要求学生进行2PSK信号的产生及谱分析,到达以下目的:1.通过利用MATLAB对数字通信相关内容进行仿真设计,熟悉数字通信的相关理论;2.更好的了解数字通信的相关知识,提高分析问题、查阅资料、自主设计等各方面能力。3.了解并掌握数字频带传输系统2PSK的调制与解调系统,通过MATLAB来实现整个通信系统的设计,进一步加深对2PS

8、K系统的理解,并熟练掌握MATLAB语言。1.3 设计内容及要求1.产生一组20位以上随机二进制数字基带信号双极性;2.产生载波信号,载波周期与码元宽度相同且均为1; 3.实现基于MATLAB仿真2PSK调制与解调;4.通过巴特沃斯低通滤波器,根据位同步信号进行抽样判决;5.各阶段信号频谱分析、误码率并给出仿真结果。2 设计原理 2PSK数字调制过程分析数字信号的传输方式分为基带传输和带通传输,在实际应用中,大多数信道具有带通特性而不能直接传输基带信号。为了使数字信号在带通信道中传输,必须使用数字基带信号对载波进行调制,以使信号与信道的特性相匹配。这种用数字基带信号控制载波,把数字基带信号变换

9、为数字带通信号的过程称为数字调制。数字调制技术的两种方法:利用模拟调制的方法去实现数字式调制,即把数字调制看成是模拟调制的一个特例,把数字基带信号当作模拟信号的特殊情况处理;利用数字信号的离散取值特点通过开关键控载波,从而实现数字调制。这种方法通常称为键控法,比方对载波的相位进行键控,便可获得相移键控PSK根本的调制方式。 图2-1模拟调制的方法 图2-2相移方法数字调相:如果两个频率相同的载波同时开始振荡,这两个频率同时到达正最大值,同时到达零值,同时到达负最大值,它们应处于"同相"状态;如果其中一个开始得迟了一点,就可能不相同了。如果一个到达正最大值时,另一个到达负最大

10、值,那么称为"反相"。一般把信号振荡一次一周作为360度。如果一个波比另一个波相差半个周期,我们说两个波的相位差180度,也就是反相。当传输数字信号时,"1"码控制发0度相位,"0"码控制发180度相位。载波的初始相位就有了移动,也就带上了信息。相移键控:利用载波的相位变化来传递数字信息,而振幅和频率保持不变。在2PSK中,通常用初始相位0和分别表示二进制“1和“0。因此,2PSK信号的时域表达式为 (2-1)其中,表示第n个符号的绝对相位1: 因此,上式可以改写为由于表示信号的两种码元的波形相同极性相反,故2PSK信号一般可以表述为

11、一个双极性全占空比矩形脉冲序列与一个正弦载波的相乘,即 (2-2)其中,g(t)是脉宽为的单个矩形脉冲,而的统计特性为=1(概率为P), =0(概率为1-P)。即发送二进制符号0时,取0 相位,发送二进制符号1时,取相位。这种以载波的不同相位直接去表示相应二进制数字信号的调制方式,称为绝对相移方式。2.2 2PSK数字解调过程分析2PSK信号的解调方法是相干解调法2。由于PSK信号本身就是利用相位传递信息的,所以在接收端必须利用信号的相位信息来解调信号。图中经过带通滤波(滤除信道噪声)的信号在相乘器中与本地载波相乘,然后用低通滤波器滤除高频分量,再进行抽样判决。判决器是按极性来判决的。即正抽样

12、值判为1,负抽样值判为0。图2-3 2PSK相干解调系统框图图2-4 2PSK信号相干解调各点时间波形带通滤波器的意义是让有用信号已调信号通过,滤除一局部噪声,所以有用信号在a处得到信号为 (2-3)假设相干载波的基准相位与2PSK信号的调制载波的基准相位一致通常默认为0相位。所以得到下式 (2-4)通过低通滤波器后 (2-5)最后通过抽样判决器恢复出数字信号。可见,2PSK信号相干解调的过程实际上是输入已调信号与本地载波信号进行极性比拟的过程,故常称为极性比拟法解调。 由于2PSK信号实际上是以一个固定初相的末调载波为参考的,因此,解调时必须有与此同频同相的同步载波。如果同步载波的相位发生变

13、化,如0相位变为相位或相位变为0相位,那么恢复的数字信息就会发生“0变“1或“1变“0,从而造成错误的恢复。这种因为本地参考载波倒相,而在接收端发生错误恢复的现象称为“倒现象或“反向工作现象。绝对移相的主要缺点是容易产生相位模糊,造成反向工作。这也是它实际应用较少的主要原因。 2.3 2PSK相干解调系统性能分析图2-5 2PSK相干解调系统性能原理方框图在实际通信系统中往往存在噪声,噪声会对判决值产生影响,即会产生误码率,一般假设信道的噪声为高斯白噪声,下面讨论2PSK解调器在高斯白噪声干扰下的误码率3: 在AWGN信道下BPSK信号相干解调的理论误码率为: (2-6)其中为信噪比。在大信噪

14、比条件下,上式可近似为: (2-7)3 设计实现 系统设计框图随机产生20位二进制单极性码单极性码转换为双极性码2PSK调制信 道加性AWGN相 干解 调抽 样判 决低 通滤 波频 谱分 析输 出2PSK误码率仿真图3-1 系统设计框图 M文件下仿真设计思路及过程本设计主要是通过MATLAB来实现整个2PSK系统,在用MATLAB语言编程的时候主要分为以下几个局部。 2PSK调制局部1通过码型变换产生双极性数字基带信号。首先调用MATLAB的rand函数产生一组随机序列,然后将离散的随机序列变换成单极性的二进制数字基带信号,将单极性信号乘以2然后减去1即可得到我们所需要的二进制双极性数字基带信

15、号。其中单双极性码元宽度为1,每个码元采样250点即采样间隔为1/250。2载波信号的产生。采用载频为=1Hz的余弦载波信号,初始相位设为0,使得载波周期与码元宽度相同且均为1。3通过随机二进制双极性数字基带信号与载波信号相乘得到2PSK信号0变1不变:psk=Bipolar_NRZ.*carrier_signal;4已调信号通过信道传输时会受到噪声影响,我们通过MATLAB的awgn函数来模拟高斯白噪声与已调信号相加的过程,在这里我们只考虑加性噪声,不考虑乘型噪声。其中添加的高斯白噪声是由y1=awgn(psk,10)实现,其中awgn为加性高斯白噪声信道模型,信道的信噪比为20。3.2.2

16、 2PSK解调局部1相干解调的实现过程是将接收机收到信号通过乘法器与载波信号相乘即y2=y1.*carrier_signal2用MATLAB来设计理想的巴特沃斯模拟低通滤波器,由于载波信号为1HZ,而要滤去的高频信号为2HZ,故设通带截止频率1HZ,阻带截止频率2HZ。3进行抽样判决,对每一个码元宽度中间值作判决抽样,增加抽样成功率。假设判决值大于0,那么输出值置为1,否那么置为0。3求解误码率,利用公式2-6可以计算误码率的理论值,信噪比snrdB是从-10到10变化,将输入的随机二进制信号与抽样判决值进行比拟,误码率即为误码数与码元总数的比值。3.3 Simulink下的仿真3.3.1 仿

17、真模型建立2PSK调制与解调及误码分析的总体仿真模型方框图如下所示,上半局部为调制局部,下半局部为解调局部4。图3-2 Simulink仿真模型3.3.2参数的设置1正弦载波(Sine Wave2)参数设置:设置的振幅是1,频率为1HZ,相位为0。2与载波反相正弦波(Sine Wave1)参数设置:设置的振幅是-1,频率也是1hz,相位为0。3伯努利二进制随机序列产生器(Bemoulll Binary Generator):0和1的出现概率为0.5,抽样时间为1秒,采用是基于采样的,其幅度设置为2,周期为3,占1比为2/3。4码型变化器(Unipolar toBipolar Converter

18、)参数设置:设置依据:采用1变0不变调制,故极性设为“Positive。5多路选择器(Switch)参数设置:当二进制序列大于0时,输出第一路信号;当二进制序列小于0时,输出第二路信号。6带通滤波器(Digital Filter Design)参数:带通范围为12HZ,载波频率为1HZ,而基带号带宽为1HZ,考滤到滤波器的边沿缓降,故设置为12HZ。7低通滤波器(Digital Filter Design)参数设置:截止频率为1HZ,二进制序列的带宽为1HZ,故取1HZ。8取样判决器(Sign)参数设置:门限值取为,取样时间为1,当大于0.5时输出0,当小于0.5时输出1,能到达在1变0不变的

19、取样规那么下正确解码的目的。3.3.3仿真结果调制波形:图3-3 2PSK调制的波形图中第一个图为正相载波的波形,第二个图为随机产生的二进制序列,第三个图为通过码型变换器后的波形,最后一个图为调制后的2PSK信号。解调波形:图3-4 参加高斯白噪声后的解调波形图中第一个图为收到的2PSK波形参加了高斯噪声,第二个图为与同频同向载波相乘后的波形,第三个图为抽样判决后的双极性二进制波形,最后一个图是经过极性变换后的波形。3.3.4 仿真结果分析在Simulink下能够清晰的看到2PSK调制和解调的波形。2PSK数字调制系统采用的是双极性矩形波,所以在基带信号产生后要进行极性变换。2PSK的调制是通

20、过键控法实现的,还可以采用模拟调制的方法。2PSK的解调只有相干解调一种方法。在参加高斯白噪声后,依然可以得到解调的波形,但是存在一定的误码率。且信噪比越大,误码率越低。4 M文件仿真结果4.1 2PSK调制、解调系统信号波形图图4-1二进制数字基带信号与载波信号图4-2 2PSK信号与接收机接收到的信号波形图4-3 通过解调、低通输出波形由公式2-4可知,通过低通滤波器以后,输出波形近似于,即波形相似于双极性基带信号波形,且幅度减半。图4-4 判决输出波形将抽样输出的基带信号波形与原信号相比拟可以发现两个信号波形完全相同,说明整个2PSK的调制、解调系统是正确的。4.2 2PSK调制解调系统

21、频谱分析数字基带信号为二进制非归零码,所以它的傅里叶变换应该是门函数,信号带宽为1/TS,其频谱图-10。载波信号为正弦信号,载频为1Hz,其频谱如下。图4-5 数字基带信号与载波信号频谱2PSK信号的实质为基带信号与载波相乘的结果,所以2PSK的信号频谱是基带信号频谱的线性搬移,中心频率为fc.,带宽为基带信号带宽的两倍,如图-11,2PSK信号通过信道后,加上了高斯白噪声,其频谱如下。图4-6 2PSK信号与接收机接收的信号频谱相干解调实质是将已调信号与提取的载波信号相乘,所以解调输出的信号的频率成分包括基带信号频率和载频信号和噪声如图-12,通过低通滤波器后,高频成分被虑掉,剩下基带信号

22、和局部噪声。图4-7 解调输出与低通输出的信号频谱图4-8 判决输出信号频谱与基带信号频谱通过比拟判决输出信号的频谱和基带信号频谱,得出结论,2PSK的调制解调系统设计是正确的。4.3 各阶段功率谱密度分析及误码率图4-9 2PSK功率谱密度图4-10 2PSK系统误码率由图可以看出系统的误码率为0。5 总结通过在本次设计中的实践明白了自己知识上的误区,例如,在低通滤波的过程中,主要目的是滤去高频分量,滤去载波成分,所以对于低通滤波器的截止频率的设置较为关键。而在2PSK的调制与解调中所用信号为双极性的信号,因此要将在本次设计中产生的单极性信号经过码的变化形成双极性码来传输。本次设计只是按理论

23、上的知识结构进行简单地系统构建,目的是明确数字基带传输的原理及过程,而对于具体问题,例如,实际中信道噪声一般为高斯白噪声,本次设计为简便并未采用而是用rand函数产生了随机噪声信号。此外,还有在2PSK实际传输系统中,在恢复载波的过程中会出现“倒现象即相位模糊现象,但是在本次设计中直接在解调时给其同频同相的载波,所以不会出现此种现象,因此不必考虑。这是自己第一次利用Matlab编程功能实现通信原理中根底知识系统地构建和利用Matlab中Simulink模块搭建系统来实现,通过自己亲自去动手和调试我明白了实践的重要性,尤其是对程序的调试,更需要大量的时间反复上机运行,发现错误并改正,这样也就加强

24、了自己对程序分析的能力,更深刻地明白了通信原理中的知识内容,更进一步懂得了理论联系实际的含义,同时提高了自己的思考能力,使得自己对课本里的内容理解、记忆地更加透彻,这无论是在我以后的工作中或是学习中都是非常有用的。参考文献1 郝建军,桑林.数字通信M.北京:人民邮电出版社,2002(2):206207.1 樊昌信,曹丽娜.通信原理M.北京:国防工业出版社,20216:188190.3 李明明,李白萍.电子信息类专业MATLAB实验教程M.北京:北京大学出版社,20211:102208.4 刘学勇.详解MATLAB/Simulink通信系统建模与仿真M.北京:电子工业出版社,20211:1601

25、73.附录代码%数字通信课程设计_2PSK调制解调器的建模与仿真clear all;close all;i=20; j=5000; %i为随机数个数,j为采样点数t=linspace(0,20,5000);%在0到20之间等分成5000个点,每个码元250点% % 功能实现模块一:产生随机二进制数字基带信号 %rem=round(rand(1,i);%调用函数产生0-1随机序列,round按四舍五入取整Bipolar_NRZ=t;%将离散的的随机序列转变成连续的单极性二进制码元for n=1:20 %20个随机数 if rem(n)<1; %假设随机数值小于1那么单极性信号赋值为0 fo

26、r m=j/i*(n-1)+1:j/i*n %m=250*(n-1):250*n Bipolar_NRZ(m)=-1; end else %假设随机数值等于1那么单极性信号赋值为1 for m=j/i*(n-1)+1:j/i*n Bipolar_NRZ(m)=1; end endendfigure(1);subplot(211);plot(t,Bipolar_NRZ);title('双极性二进制数字基带信号');axis(0,20,-2,2);grid on;% 功能实现模块二:产生载波信号 % 载波周期与码元宽度相同且均为1 %fc=1;%载波频率为1Hzcarrier_si

27、gnal=cos(2*pi*fc*t); %载波周期与码元宽度相同且均为1subplot(212);plot(t,carrier_signal);title('载波信号波形');axis(0 20 -2 2);grid on; % 功能实现模块三:2psk调制局部:基带信号与载波相乘 %psk=Bipolar_NRZ.*carrier_signal;%基带信号与载波相乘figure(2);subplot(211);plot(t,psk);title('已调信号波形');axis(0,20,-2,2);grid on ;% 功能实现模块四:调制信号通过信道传输产生

28、加性噪声 %y1=awgn(psk,20);%信号psk中参加白噪声,信噪比为10subplot(212);plot(t,y1);axis(0,20,-1,2);title('加噪后的波形');% 功能实现模块六:相干解调实现过程 %y2=y1.*carrier_signal;%接收机收到信号输入乘法器与载波信号相乘figure(3)subplot(211);plot(t,y2);title('解调输出波形');grid;% 功能实现模块六:通过巴特沃斯低通滤波器 %fp=1;fs=2;rp=1;rs=30;fn=300;%设计巴特沃斯低通滤波器的参数,通带截止

29、频率1HZ,阻带截止频率2HZ,采样率400 ws=fs/(fn/2); wp=fp/(fn/2);%计算归一化角频率n,wn=buttord(wp,ws,rp,rs);%计算阶数和截止频率b,a=butter(n,wn);y3=filtfilt(b,a,y2);subplot(212);plot(t,y3);title('经低通滤波器后的输出信号波形');grid on;% 功能实现模块七:根据位同步信号进行抽样判决 %y4=linspace(0,19);y4=0;for n=1:20; if y3(2*n-1)*125)>0;%对每一个码元宽度中间值作判决抽样,增加抽

30、样成功率 y4(n)=1; else y4(n)=0; endendfigure(4)subplot(211);stem(y4);axis(0 20 -2 2);title('抽样后得到的离散采样值');grid on;xlabel('时间/s');y5=t;for n=1:20 if y4(n)=1; %假设当前码元的抽样值为1,那么该码元的所有值250点为1 for m=j/i*(n-1)+1:j/i*n y5(m)=1; end else for m=j/i*(n-1)+1:j/i*n y5(m)=-1; end endendsubplot(212);pl

31、ot(t,y5);axis(0 20 -2 2);grid on;title('抽样判决输出基带信号');xlabel('采样点数');% 功能实现模块八:各阶段信号频谱分析 %fs=250;N=1024; %采样频率和数据点数n=0:N-1;t=n/fs; %时间序列y=fft(Bipolar_NRZ,N);%对信号进行FFT变换mag=abs(y);%求取Fourier变换的振幅f=n*fs/N;figure(5);subplot(211)plot(f(1:N/2),mag(1:N/2);axis(0 50 0 500);xlabel('频率/Hz&

32、#39;);ylabel('振幅');title('基带信号频谱N=1024');grid on; fs=250;N=1024;n=0:N-1;t=n/fs;y=fft(carrier_signal,N);%对信号进行FFT变换mag=abs(y);%求取Fourier变换的振幅f=n*fs/N;subplot(212)plot(f(1:N/2),mag(1:N/2);axis(0 50 0 500);xlabel('频率/Hz');ylabel('振幅');title('载波信号频谱N=1024)');grid

33、on; fs=256;N=1024;n=0:N-1;t=n/fs;y=fft(psk,N);%对信号进行FFT变换mag=abs(y);%求取Fourier变换的振幅f=n*fs/N;figure(6)subplot(211)plot(f(1:N/2),mag(1:N/2);axis(0 50 0 500);xlabel('频率/Hz');ylabel('振幅');title('2PSK信号频谱N=1024)');grid on; fs=250;N=1024;n=0:N-1;t=n/fs;y=fft(y1,N);%对信号进行FFT变换mag=ab

34、s(y);%求取Fourier变换的振幅f=n*fs/N;subplot(212)plot(f(1:N/2),mag(1:N/2);axis(0 50 0 500);xlabel('频率/Hz');ylabel('振幅');title('接收机接收到的信号频谱N=1024)');grid on; fs=250;N=1024;n=0:N-1;t=n/fs;y=fft(y2,N);%对信号进行FFT变换mag=abs(y);%求取Fourier变换的振幅f=n*fs/N;figure(7)subplot(211)plot(f(1:N/2),mag(1

35、:N/2);axis(0 50 0 500);xlabel('频率/Hz');ylabel('振幅');title('解调输出信号频谱N=1024)');grid on; fs=250;N=1024;n=0:N-1;t=n/fs;y=fft(y3,N);%对信号进行FFT变换mag=abs(y);%求取Fourier变换的振幅f=n*fs/N;subplot(212)plot(f(1:N/2),mag(1:N/2);axis(0 50 0 500);xlabel('频率/Hz');ylabel('振幅');titl

36、e('低通输出信号频谱N=1024)');grid on; fs=250;N=1024;n=0:N-1;t=n/fs;y=fft(y5,N);%对信号进行FFT变换mag=abs(y);%求取Fourier变换的振幅f=n*fs/N;figure(8)plot(f(1:N/2),mag(1:N/2);axis(0 50 0 500);xlabel('频率/Hz');ylabel('振幅');title('抽样判决输出信号频谱N=1024)');grid on;% 功能实现模块九:各阶段信号功率谱密度分析 %Fs=1000; n=0:1/Fs:1; nfft=1024; window=hamming(100); %海明窗noverlap=20; %数据无重叠 range='half' %频率间隔为0 Fs/2,只计算一半的频率 Pxx1,f=pwelch(carrier_signal,window,noverlap,nfft,Fs,range); plot_Pxx1=10*log10(Pxx1);Pxx2,f=pwelch(psk,window,noverlap,nfft,Fs,range); plot_Pxx2=10*log10(Pxx2);Pxx3,f=pwelch(y1,w

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论