版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、会计学1,)()(:tytxL: tLyyxQxyxPd),(d),(tttQttPd )(),( )(),()(t)(t 对有向光滑弧 对有向光滑弧baxxyL:, )(:xxxQxxPbad )(,)(,)(xLyyxQxyxPd),(d),(第1页/共39页zzyxRyzyxQxzyxPd),(d),(d),(:,)()()(ttztytx)(, )(),(tttP)(t)(t)(t4. 两类曲线积分的联系LyQxPddsQPLdcoscoszRyQxPdddsRQPdcoscoscos)(, )(),(tttQ)(, )(),(tttRtd 第2页/共39页原点 O 的距离成正比,例例
2、1. 设一个质点在),(yxM处受恒指向原点,)0,(aA沿椭圆此质点由点12222byax沿逆时针移动到, ),0(bB),(yxMxyo)0 ,(aA), 0(bB解解:yykxxkWdd AB:ABtaxcostbysin20:t, ),(yxOM F 的大小与M 到原F 的方向力F 的作用,求力F 所作的功. ),(yxkFF第3页/共39页)0 , 0 , 1 (A)0 , 1 , 0(B) 1 , 0 , 0(Coxyz为折线 ABCOA(如图), 计算zyyxIddd解解:I001d)1 (yy10dx2)211 ( 12101d2 x1 yx1 zyyxABddzyyBCddO
3、Axd第4页/共39页yAxoL,d)(d)3(22yxyxyxL其中L 为上半24xxy从 O (0, 0) 到 A (4, 0).解解: 为了使用格林公式, 添加辅助线段,AOD它与L 所围原式yxyxyxAOLd)(d)3(22Dyxdd4OAyxyxyxd)(d)3(22402dxx圆周区域为D , 则6483第5页/共39页一、格林公式一、格林公式 二、平面上曲线积分与路径无关的二、平面上曲线积分与路径无关的 等价条件等价条件格林公式及其应用 第6页/共39页LD区域 D 分类单连通区域 ( 无“洞”区域 )多连通区域 ( 有“洞”区域 )域 D 边界L 的正向正向: 域的内部靠左域
4、的内部靠左定理定理1. 设闭区域 D 是由分段光滑正向曲线 L 围成,则有, ),(yxP),(yxQLDyQxPyxyPxQdddd( 格林公式格林公式 )函数在 D 上具有连续一阶偏导数,LDyxyQxPyxQPdddd或第7页/共39页1) 若D 既是 X - 型区域 , 又是 Y - 型区域 , 且bxaxyxD)()(:21dycyxyD)()(:21则yxxQDdddcyyyQd),(2)()(21dyyxxQCBEyyxQd),(CAEyyxQd),(CBEyyxQd),(EACyyxQd),(dcyyyQd),(1dcyddcyxoECBAbaD第8页/共39页即yxxQDdd
5、LyyxQd),(同理可证yxyPDddLxyxPd),(、两式相加得:LDyQxPyxyPxQdddd第9页/共39页yxoL2) 若D不满足以上条件, 则可通过加辅助线将其分割1DnD2DnkDyxyPxQk1ddyxyPxQDddnkDkyQxP1ddLyQxPdd为有限个上述形式的区域 , 如图)(的正向边界表示kkDD证毕格格林林公公式式的的实实质质: : 沟沟通通了了沿沿闭闭曲曲线线的的积积分分与与二二重重积积分分之之间间的的联联系系.第10页/共39页LxyyxAdd21格林公式格林公式LDyQxPyxyPxQdddd例如例如, 椭圆20,sincos:byaxL所围面积Lxyy
6、xAdd212022d)sincos(21ababab第11页/共39页设 L 是一条分段光滑的闭曲线, 证明0dd22yxxyxL证证: 令,22xQyxP则yPxQ利用格林公式 , 得yxxyxLdd22022xxDyxdd00第12页/共39页,dd2Dyyxe其中D 是以 O(0,0) , A(1,1) , B(0,1) 为顶点的三角形闭域 . 解解: 令, 则2, 0yexQPyPxQ利用格林公式 , 有Dyyxedd2Dyyexd2yexOAyd2yeyyd102)1(211exy oyx) 1 , 1 (A) 1 , 0(BD2ye第13页/共39页,dd22Lyxxyyx其中L
7、为一无重点且不过原点的分段光滑正向闭曲线.解解: 令,022时则当 yx22222)(yxxyxQ设 L 所围区域为D,)0 , 0(时当D由格林公式知0dd22Lyxxyyx,22yxyP22yxxQyPyxoL第14页/共39页dsincos2022222rrr2,)0 , 0(时当D在D 内作圆周,:222ryxl取逆时针方向,1D, 对区域1D应用格Lyxxyyx22ddlyxxyyx22ddlLyxxyyx22dd0dd01yxDlLyxxyyxyxxyyx2222ddddL1Dloyx记 L 和 l 所围的区域为林公式 , 得第15页/共39页xyoL解解 引引入入辅辅助助曲曲线线
8、L,1 1) 简化曲线积分简化曲线积分ABDBOABOAL 应应用用格格林林公公式式, xQP , 0 有有第16页/共39页 LDxdydxdy, BOABOAxdyxdyxdy, 0, 0 BOOAxdyxdy由于由于.412rdxdyxdyDAB 第17页/共39页yAxoL,d)(d)3(22yxyxyxL其中L 为上半24xxy从 O (0, 0) 到 A (4, 0).解解: 为了使用格林公式, 添加辅助线段,AOD它与L 所围原式yxyxyxAOLd)(d)3(22Dyxdd4OAyxyxyxd)(d)3(22402dxx圆周区域为D , 则6483第18页/共39页例例 2 2
9、 计计算算 Dydxdye2,其其中中D是是以以)1 , 0(),1 , 1(),0 , 0(BAO为为顶顶点点的的三三角角形形闭闭区区域域.解解 令令2, 0yxeQP ,2 2)简化二重积分)简化二重积分xyoAB11D则则 2yeyPxQ ,第19页/共39页应应用用格格林林公公式式, ,有有 BOABOAyDydyxedxdye22 1022dxxedyxexOAy).1(211 e第20页/共39页格林公式格林公式: LDQdyPdxdxdyyPxQ)(取取,xQyP 得得 LDydxxdydxdy2闭闭区区域域D的的面面积积 LydxxdyA21.取取, 0 xQP 得得 Lxdy
10、A取取, 0, QyP 得得 LydxA3 3)计算平面面积)计算平面面积第21页/共39页曲线曲线AMO由函数由函数, 0,axxaxy 表示表示,例例 4 4 计计算算抛抛物物线线)0()(2 aaxyx与与x轴轴所所围围成成的的面面积积. .解解ONA为为直直线线0 y. LydxxdyA21 AMOONAydxxdyydxxdy2121)0 ,(aANM第22页/共39页 AMOydxxdy21dxxaxdxaxaxa)()12(210 .61420adxxaa )0 ,(aANM第23页/共39页定理定理2. 设D 是单连通域 ,),(),(yxQyxP在D 内具有一阶连续偏导数,(
11、1) 沿D 中任意光滑闭曲线 L , 有.0ddLyQxP(2) 对D 中任一分段光滑曲线 L, 曲线积分(3)yQxPdd ),(yxuyQxPyxudd),(d(4) 在 D 内每一点都有.xQyPLyQxPdd与路径无关, 只与起止点有关. 函数则以下四个条件等价:在 D 内是某一函数的全微分,即 第24页/共39页说明说明: 当积分与路径无关时, 曲线积分可记为 设21, LL21ddddLLyQxPyQxP1ddLyQxP21ddLLyQxP0AB1L2L2ddLyQxP1ddLyQxP为D 内任意两条由A 到B 的有向分段光滑曲线, 则(根据条件(1)BAyQxPddAByQxPd
12、d2ddLyQxP第25页/共39页在D内取定点),(00yxA因曲线积分),(),(00dd),(yxyxyQxPyxu),(),(yxuyxxuux则),(yxPxuxuxx0lim),(lim0yxxPx),(),(ddyxxyxyQxP),(),(dyxxyxxPxyxxP),(同理可证yu),(yxQ因此有yQxPuddd和任一点B( x, y ),与路径无关,),(yxxC),(yxB),(00yxA有函数 第26页/共39页设存在函数 u ( x , y ) 使得yQxPuddd则),(),(yxQyuyxPxuP, Q 在 D 内具有连续的偏导数,xyuyxu22所以从而在D内
13、每一点都有xQyPxyuxQyxuyP22,第27页/共39页设L为D中任一分段光滑闭曲线,DD (如图) ,上因此在 DxQyP利用格林公式格林公式 , 得yxxQxQyQxPLDdd)(ddDDL0所围区域为证毕第28页/共39页yx根据定理2 , 若在某区域内,xQyP则2) 求曲线积分时, 可利用格林公式简化计算,3) 可用积分法求d u = P dx + Q dy在域 D 内的原函数:Dyx),(00及动点,),(DyxyyxQxyxPyxuyxyxd),(d),(),(),(),(00 xxxyxP0d),(0或yyyyxQyxu0d),(),(00y0 x则原函数为yyyyxQ0
14、d),(xxxyxP0d),(若积分路径不是闭曲线, 可添加辅助线;取定点1) 计算曲线积分时, 可选择方便的积分路径;第29页/共39页yyxxyxdd22是某个函数的全微分, 并求出这个函数. 证证: 设,22yxQyxP则xQyxyP2由定理2 可知, 存在函数 u (x , y) 使yyxxyxuddd22),()0 , 0(22dd),(yxyyxxyxyxu。)0 , 0(。),(yx)0 ,(xxxx0d0yyxyd02yyxyd022221yx第30页/共39页22ddyxxyyx在右半平面 ( x 0 ) 内存在原函数 , 并求出它. 证证: 令2222,yxxQyxyP则)
15、0()(22222xyQyxxyxP由定理定理 2 可知存在原函数),()0 , 1 (22dd),(yxyxxyyxyxuxx1d0)0(arctanxxyoxyyyxyx022d)0 ,(x)0 , 1(),(yx第31页/共39页oxy)0 ,(x)0 , 1(),(yx),()0 , 1 (22dd),(yxyxxyyxyxuyyy021dyxyyarctan1arctanarctanyxarctan2xyxxy122d或), 1 (y)0(arctanxxy第32页/共39页作用下沿曲线 L :xycos2由)2, 0(A移动到, )0,2(B求力场所作的功W解解:)dd(2Lyxx
16、yrk令,22rxkQrykP则有)0()(22422yxryxkyPxQ可见, 在不含原点的单连通区域内积分与路径无关. )(22yxr其中LBAyox),(2xyrkFsFWLd第33页/共39页:AB)dd(2yxxyrkWABd)cos(sin2022k)02:(sin2,cos2yxk2思考思考: 积分路径是否可以取?OBAO取圆弧LBAyox为什么?注意, 本题只在不含原点的单连通区域内积分与路径无关 !第34页/共39页例例6. 设,4:, 1:222412yxlyxL且都取正向, 问下列计算是否正确 ?Lyxxyyx22d4d) 1(lyxxyyx22d4dlxyyxd4d41Do2y1x2LlDd5415Lyxxyyx22dd)2(lyxxyyx22ddlxyyxdd41Dd2412注注:时022 yxyPxQ) 1(yPxQ)2(第35页/共39页1. 格林公式LyQxPdd2. 等价条件在 D 内与路径无关.yPxQ在 D 内有yQxPudddyxyPxQDddLyQxPdd对 D 内任意闭曲线 L 有0ddLyQxP在 D 内有设 P, Q 在 D 内具有一阶连续偏导数, 则有第36页/共39页, )56,4(),(grad42234yyxxyxyxu).,(yxu求解解:)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年外科期末考核题目与答案
- 法务岗位招聘笔试题与参考答案2025年
- 董事会秘书持续学习与知识更新规划
- 隧道工程绿色施工实施方案
- 产品迭代规划及执行策略
- 口腔医学技术士年度工作计划与目标设定
- 金融产品销售人员的招聘与选拔
- 焊接工程进度管理与控制方案
- 电气工程师常用工具软件及使用技巧
- 大型游戏运营的全方位规划
- 2025年江苏安全员c考试题目及答案
- 多人合伙建房合同范本
- 2025年胸膜炎护理试题及答案
- 上海购房合同(标准版)
- 2025年青海省公务员申论考试真题试卷(含答案)
- 文旅产业知识培训课件
- 浙江省浙南名校联盟2025-2026学年高三上学期10月联考英语试题
- 2026届新高考英语冲刺热点复习 2025年新高考1卷阅读理解D篇说题
- 新能源公交安全培训内容课件
- 企业人力资源数字化管理平台方案
- 2025年广东铁投集团校园招聘笔试参考题库附带答案详解
评论
0/150
提交评论