版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021年普通高等学校招生全国统一考试模拟试题理科数学第一卷一、选择题:此题共12个小题,每题5分,在每题给出的四个选项中,只有一项为哪一项符合题目要求的.1. 集合,那么= 拼十年寒窗挑灯苦读不畏难;携双亲期盼背水勇战定夺魁。如果你希望成功,以恒心为良友,以经验为参谋,以小心为兄弟,以希望为哨兵。A. B. C. D. 【答案】B【解析】由题知,那么故此题答案选2. 为虚数单位,假设复数在复平面内对应的点在第四象限,那么的取值范围为 A. B. C. D. 【答案】B【解析】由题又对应复平面的点在第四象限,可知,解得故此题答案选3. 以下函数中,既是偶函数,又在内单调递增的为 A. B. C
2、. D. 【答案】D【解析】为非奇非偶函数,排除;为偶函数,但在内单调递减,排除;为奇函数,排除故此题答案选4. 双曲线:与双曲线:,给出以下说法,其中错误的选项是 A. 它们的焦距相等 B. 它们的焦点在同一个圆上C. 它们的渐近线方程相同 D. 它们的离心率相等【答案】D【解析】由题知那么两双曲线的焦距相等且,焦点都在圆的圆上,其实为圆与坐标轴交点渐近线方程都为,由于实轴长度不同故离心率不同故此题答案选,5. 在等比数列中,“,是方程的两根是“的 A. 充分不必要条件 B. 必要不充分条件C. 充要条件 D. 既不充分也不必要条件【答案】A【解析】由韦达定理知,那么,那么等比数列中,那么在
3、常数列或中,不是所给方程的两根那么在等比数列中,“,是方程的两根是“的充分不必要条件故此题答案选6. 执行如图的程序框图,那么输出的值为 A. 1009 B. -1009 C. -1007 D. 1008【答案】B【解析】由程序框图那么,由规律知输出故此题答案选7. 一几何体的三视图如下图,那么该几何体的体积为 A. B. C. D. 【答案】C【解析】观察三视图可知,几何体是一个圆锥的与三棱锥的组合体,其中圆锥的底面半径为,高为三棱锥的底面是两直角边分别为的直角三角形,高为那么几何体的体积故此题答案选8. 函数 的局部图象如下图,那么函数图象的一个对称中心可能为 A. B. C. D. 【答
4、案】C【解析】由图象最高点与最低点的纵坐标知,又,即,所以那么,图象过点,那么,即,所以,又,那么故,令,得,令,可得其中一个对称中心为故此题答案选9. ?几何原本?卷2的几何代数法以几何方法研究代数问题成了后世西方数学家处理问题的重要依据,通过这一原理,很多的代数的公理或定理都能够通过图形实现证明,也称之为无字证明.现有如下图图形,点在半圆上,点在直径上,且,设,那么该图形可以完成的无字证明为 A. B. C. D. 【答案】D【解析】令,可得圆的半径,又,那么,再根据题图知,即故此题答案选10. 为迎接中国共产党的十九大的到来,某校举办了“祖国,你好的诗歌朗诵比赛.该校高三年级准备从包括甲
5、、乙、丙在内的7名学生中选派4名学生参加,要求甲、乙、丙这3名同学中至少有1人参加,且当这3名同学都参加时,甲和乙的朗诵顺序不能相邻,那么选派的4名学生不同的朗诵顺序的种数为 A. 720 B. 768 C. 810 D. 816【答案】B【解析】由题知结果有三种情况甲、乙、丙三名同学全参加,有种情况,其中甲、乙相邻的有种情况,所以甲、乙、丙三名同学全参加时,甲和乙的朗诵顺序不能相邻顺序有种情况;甲、乙、丙三名同学恰有一人参加,不同的朗诵顺序有种情况;甲、乙、丙三名同学恰有二人参加时,不同的朗诵顺序有种情况那么选派的4名学生不同的朗诵顺序有种情况,故此题答案选11. 焦点为的抛物线:的准线与轴
6、交于点,点在抛物线上,那么当取得最大值时,直线的方程为 A. 或 B. C. 或 D. 【答案】A【解析】过作与准线垂直,垂足为,那么,那么当取得最大值时,必须取得最大值,此时直线与抛物线相切,可设切线方程为与联立,消去得,所以,得那么直线方程为或故此题答案选点睛:抛物线的定义是解决抛物线问题的根底,它能将两种距离(抛物线上的点到焦点的距离,抛物线上的点到准线的距离)进行等量转化,如果问题中涉及抛物线上的点到焦点或到准线的距离,那么用抛物线定义就能解决问题此题就是将到焦点的距离转化成到准线的距离,将比值问题转化成切线问题求解12. 定义在上的函数满足,且当时, ,对,使得,那么实数的取值范围为
7、 A. B. C. D. 【答案】D【解析】由题知问题等价于函数在上的值域是函数在上的值域的子集当时,由二次函数及对勾函数的图象及性质,得此时,由,可得,当时,那么在的值域为当时,那么有,解得,当时,不符合题意;当时,那么有,解得综上所述,可得的取值范围为 故此题答案选点睛:求解分段函数问题应对自变量分类讨论,讨论的标准就是自变量与分段函数所给出的范围的关系,求解过程中要检验结果是否符合讨论时的范围讨论应该不重复不遗漏第二卷本卷包括必考题和选考题两局部,第13题第21题为必考题,每个试题考生都必须作答.第22题和第23题为选考题,考生根据要求作答.二、填空题:本大题共4小题,每题5分.13.
8、,假设向量与共线,那么在方向上的投影为_【答案】 【解析】由题知,又与共线,可得,得,那么方向上的投影为故此题应填14. 实数,满足不等式组且的最大值为,那么=_【答案】 【解析】作出可行域,目标函数可变为,令,作出,由平移可知直线过时取最大值,那么那么故此题应填15. 在中,角,的对边分别为,且,的面积为,那么的值为_【答案】 【解析】由正弦定理,原等式可化为,进一步化为,那么,即在三角形中由面积公式,可知,由余弦定理,代入可得故此题应填点睛:此题主要考查正余弦定理.在利用正,余弦定理 解三角形的过程中,当所给的等式中既有正弦又有余弦时,常利用正弦定理将边的关系转化为角的关系;如果出现边的平
9、方或者两边长的乘积时 可考虑使用余弦定理判断三角形的形状.解三角形问题时,要注意正,余弦定理的变形应用,解题思路有两个:一个是角化为边,二是边化为角.选择余弦定理和面积时,要以角的为主16. 球是正三棱锥底面为正三角形,顶点在底面的射影为底面中心的外接球,点在线段上,且,过点作圆的截面,那么所得截面圆面积的取值范围是_.【答案】【解析】令的中心为,球的半径为,连接,易求得,那么,在中,由勾股定理得,解得,由,知,所以,所以当截面与垂直时,截面的面积最小,此时截面圆的半径,此时截面面积为当截面过球心时,截面圆的面积最大,此时截面圆的面积为故此题应填点睛:解决球与其他几何体的内切,外接问题的关系在
10、于仔细观察,分析几何体的结构特征,搞清相关元素的位置关系和数量关系,选准最正确角度做出截面(要使这个截面尽可能多地包含球和其他几何体的各种元素,尽可能的表达这些元素之间的关系),到达空间问题平面化的目的三、解答题:解容许写出文字说明,证明过程或演算步骤.17. 的展开式中的系数恰好是数列的前项和.1求数列的通项公式;2数列满足,记数列的前项和为,求证:.【答案】1;2见解析.【解析】试题分析:1由二项展开式可知各项中的系数,求和后可得,利用与间的关系可得数列的通项公式;2由的通项公式可求得的通项公式,对进行裂项,用裂项法可求得,利用放缩法可证明不等式试题解析:1的展开式中的系数为 ,即,所以当
11、时,;当时,也适合上式,所以数列的通项公式为.2证明: ,所以 ,所以.18. 如图,点在以为直径的圆上,垂直与圆所在平面,为的垂心.1求证:平面平面;2假设,求二面角的余弦值.【答案】1见解析;2 .【解析】试题分析:1延长交于点,由重心性质及中位线性质可得,再结合圆的性质得,由,可证 平面,进一步可得平面平面2以点为原点,方向分别为,轴正方向建立空间直角坐标系,写出各点坐标,利用二面角与二个半平面的法向量的夹角间的关系可求二面角的余弦值试题解析:1如图,延长交于点.因为为的重心,所以为的中点.因为为的中点,所以.因为是圆的直径,所以,所以.因为平面,平面,所以.又平面,平面=,所以 平面.
12、即平面,又平面,所以平面 平面.2以点为原点,方向分别为,轴正方向建立空间直角坐标系,那么,那么,.平面即为平面,设平面的一个法向量为,那么令,得.过点作于点,由平面,易得,又,所以平面,即为平面的一个法向量.在中,由,得,那么,.所以,.所以.设二面角的大小为,那么 .点睛:假设分别二面角的两个半平面的法向量,那么二面角的大小满足,二面角的平面角的大小是的夹角(或其补角,需根据观察得出结论)在利用向量求空间角时,建立合理的空间直角坐标系,正确写出各点坐标,求出平面的法向量是解题的关键19. 2021年春节期间,某服装超市举办了一次有奖促销活动,消费每超过600元含600元,均可抽奖一次,抽奖
13、方案有两种,顾客只能选择其中的一种.方案一:从装有10个形状、大小完全相同的小球其中红球3个,黑球7个的抽奖盒中,一次性摸出3个球,其中奖规那么为:假设摸到3个红球,享受免单优惠;假设摸出2个红球那么打6折,假设摸出1个红球,那么打7折;假设没摸出红球,那么不打折.方案二:从装有10个形状、大小完全相同的小球其中红球3个,黑球7个的抽奖盒中,有放回每次摸取1球,连摸3次,每摸到1次红球,立减200元.1假设两个顾客均分别消费了600元,且均选择抽奖方案一,试求两位顾客均享受免单优惠的概率;2假设某顾客消费恰好满1000元,试从概率的角度比拟该顾客选择哪一种抽奖方案更合算?【答案】1 ;2见解析
14、.【解析】试题分析:1选择方案一可以免单,但需要摸出三个红球,利用古典概型求出摸出三个红球的概率,再利用两个相互独立事件同时发生的概率应该是两事件的概率乘积可求得两位顾客均享受免单优惠的概率;2分别写出两种方案下付款金额的分布列,再求出期望值,利用期望值的大小,进行合理选择试题解析:1选择方案一假设享受到免单优惠,那么需要摸出三个红球,设顾客享受到免单优惠为事件,那么,所以两位顾客均享受到免单的概率为.2假设选择方案一,设付款金额为元,那么可能的取值为0,600,700,1000.,故的分布列为,所以 元.假设选择方案二,设摸到红球的个数为,付款金额为,那么,由可得,故,所以 元.因为,所以该
15、顾客选择第一种抽奖方案更合算.20. 椭圆:的长轴长为6,且椭圆与圆:的公共弦长为.1求椭圆的方程.2过点作斜率为的直线与椭圆交于两点,试判断在轴上是否存在点,使得为以为底边的等腰三角形.假设存在,求出点的横坐标的取值范围,假设不存在,请说明理由.【答案】1;2见解析.【解析】试题分析:1由长轴长可得值,公共弦长恰为圆直径,可知椭圆经过点,利用待定系数法可得椭圆方程;2可令直线的解析式为,设,的中点为,将直线方程与椭圆方程联立,消去,利用根与系数的关系可得,由等腰三角形中,可得,得出中由此可得点的横坐标的范围试题解析:1由题意可得,所以.由椭圆与圆:的公共弦长为,恰为圆的直径,可得椭圆经过点,
16、所以,解得.所以椭圆的方程为.2直线的解析式为,设,的中点为.假设存在点,使得为以为底边的等腰三角形,那么.由得,故,所以,.因为,所以,即,所以.当时,所以;当时,所以.综上所述,在轴上存在满足题目条件的点,且点的横坐标的取值范围为.点睛:此题主要考查椭圆的标准方程和几何性质,直线与椭圆的位置关系,根本不等式,及韦达定理的应用.解析几何大题的第一问一般都是确定曲线的方程,常见的有求参数确定方程和求轨迹确定方程,第二问一般为直线与椭圆的位置关系,解决此类问题一般需要充分利用数形结合的思想转化给出的条件,可将几何条件转化为代数关系,从而建立方程或者不等式来解决.21. 函数.1讨论函数的单调性;
17、2当时,假设函数的导函数的图象与轴交于,两点,其横坐标分别为, ,线段的中点的横坐标为,且,恰为函数的零点,求证:.【答案】1当时,在内单调递增;当时,在内单调递减,在,内单调递增;2见解析.【解析】试题分析:1对函数求导后,利用导数与函数单调性的关系,对进行讨论可得函数单调性;2由函数的导函数可知,又是的零点,代入相减化简得,对求导, .令,求得函数.不等式得证试题解析:1由于的定义域为,那么.对于方程,其判别式.当,即时,恒成立,故在内单调递增.当,即,方程恰有两个不相等是实,令,得或,此时单调递增;令,得,此时单调递减.综上所述,当时,在内单调递增;当时,在内单调递减,在,内单调递增.2
18、由1知,所以的两根,即为方程的两根.因为,所以,.又因为,为的零点,所以,两式相减得,得.而,所以 .令,由得,因为,两边同时除以,得,因为,故,解得或,所以.设,所以,那么在上是减函数,所以,即的最小值为.所以.请考生在第22、23题中任选一题作答.并用2B铅笔将答题卡上所选题目对应的题号右侧方框涂黑,按所涂题号进行评分;多涂、多答,按所涂的首题进行评分;不涂,按本选考题的首题进行评分.22. 选修4-4:坐标系与参数方程直线的参数方程为为参数,以坐标原点为极点,轴的非负半轴为极轴建立极坐标系,圆的极坐标方程为,直线与圆交于,两点.1求圆的直角坐标方程及弦的长;2动点在圆上不与,重合,试求的面积的最大值.【答案】1 ;2.【解析】试题分析:1利用平面直角坐标系与极坐标系间的转化关系,可得圆的直角坐标方程,将直线的参数方程代入,利用参
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年山东铁投集团社会招聘(63人)笔试历年备考题库附带答案详解试卷3套
- 2025安徽芜湖市市属国有企业招聘笔试历年典型考点题库附带答案详解试卷3套
- 2025年及未来5年中国工业炸药行业市场供需格局及行业前景展望报告
- 2025中央结算公司博士后科研工作站招聘笔试历年常考点试题专练附带答案详解试卷3套
- 定向公务员考试秘诀试题及答案
- 储能设备智能化控制方案
- 建筑工地高效施工技术应用方案
- 城市广场综合改造工程技术方案
- 工业园区大气环境综合整治提升项目建议书
- xx河段治理工程实施方案
- 草鱼养殖技术与鱼塘管理
- 2025广东广州新龙镇招聘农村集体出纳(文员)1人笔试考试参考题库附答案解析
- 高职院校实习基地建设方案及管理办法
- (2025)儿童脑性瘫痪经颅磁刺激治疗专家共识
- 中职人力资源管理考核模拟试题
- 输变电工程监督检查标准化清单-质监站检查
- 辩论赛详细方案(共14页)
- Q∕GDW 12152-2021 输变电工程建设施工安全风险管理规程
- 建筑安全员C证考试题库(含答案)
- 统编教材小学语文课外阅读《一百条裙子》导读课课件
- 种树郭橐驼传重点字词逐个解释及全篇知识点梳理
评论
0/150
提交评论