生物化学与分子生物学学习指导与习题集_第1页
生物化学与分子生物学学习指导与习题集_第2页
生物化学与分子生物学学习指导与习题集_第3页
生物化学与分子生物学学习指导与习题集_第4页
生物化学与分子生物学学习指导与习题集_第5页
已阅读5页,还剩78页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、简明生物化学与分子生物学学习指导与习题集陈晓光简明生物化学与分子生物学(周慧主编)是教育部制药工程专业教学指导分委员会组织编写的高等学校制药工程专业系列教材之一,全书由20章组成,分为四个部分:第一部分从第一章至第五章,主要为生物大分子的结构与性质,包括蛋白质、酶、核酸、糖类和脂质的结构与性质;第二部分从第六章至第九章,主要为物质代谢,介绍了蛋白质、核酸、糖类和脂质的分解与合成代谢;第三部分从第十章至第十五章,主要内容是分子生物学,包括原核生物和真核生物染色体结构与DNA复制、基因的转录与转录活性的调节、蛋白质生物合成机制与调节;第四部分从第十六章至第二十章,为分子生物学实验方法,包括核酸的分

2、离纯化、基因重组技术、聚合酶链反应、核酸测序和核酸的分子杂交。为了帮助学生更好地理解和掌握教材,我们编写了配套的学习指导用书。本学习指导与习题集在内容上按教材编排章节顺序编写,每章内容包括五个部分:学习目标、学习内容纲要、学习要点、“习题练习”、“参考答案”组成。    “学习目标”以“掌握”、“熟悉”、“了解”三个不同层次要求学习每章内容,加强理解,可作为教学大纲要求。    “学习内容纲要” 简要介绍每章学习内容概要。“学习要点”概括介绍每章需要重点学习掌握的基本概念、主要内容、相互联系。包括一些生物大分子的分

3、类,结构特点,重要的理化性质,酶学研究的动力学特征;重要的物质代谢途径,关键酶,代谢通路的生理意义;遗传分子生物学中心法则,DNA、RNA、蛋白质生物合成的各自体系组成及其功能,主要的合成过程及特点,基因重组操作的基本原理及过程等。    “习题练习”分为“选择题”、“填空题”、“判断题”、“名词解释”及“问答题”等多种形式,主要根据教材内容、大纲要求进行设计,以帮助学生学习理解教材内容,并有助于记忆。全部习题均有相应“参考答案”,便于学习者复习或自学。本书适用于制药工程专业本科生学习巩固所学知识和考研复习,也可作为相关学科学生、教师的教学参考用书。绪论

4、 一、生物化学的的概念: 生物化学(biochemistry)是运用化学的理论和技术,研究生物体的物质组成与结构、物质代谢与能量转变,以及与生理功能之间关系的一门科学。生物化学(biochemistry), 即生命的化学,是利用化学的原理与方法去探讨生命的一门科学,是一门研究生物体的化学组成、体内发生的反应和过程的学科。当代生物化学的研究揭示组成生物体的物质,特别是生物大分子(biomacromolecules)的结构规律,并且与细胞生物学、分子遗传学等密切联系,研究和阐明生长、分化、遗传、变异、衰老和死亡等基本生命活动的规律。二、分子生物学的概念:Watson和Crick于1953提出了DN

5、A分子的双螺旋结构模型,在此基础上形成了遗传信息传递的“中心法则”,由此奠定了现代分子生物学(molecular biology)的基础。分子生物学主要研究生物体所含基因的结构、复制和表达,以及基因产物蛋白质或RNA的结构,互相作用以及生理功能。总之,生物化学与分子生物学是在分子水平上研究生命奥秘的学科,代表当前生命科学的主流和发展的趋势。三、生物化学的发展: 1叙述生物化学阶段:是生物化学发展的萌芽阶段,其主要的工作是分析和研究生物体的组成成分以及生物体的分泌物和排泄物。 2动态生物化学阶段:是生物化学蓬勃发展的时期。就在这一时期,人们基本上弄清了生物体内各种主要化学物质的代谢途径。 3分子

6、生物学阶段:这一阶段的主要研究工作就是探讨各种生物大分子的结构与其功能之间的关系。 四、生物化学研究的主要内容:1.生物大分子的结构与功能2.物质代谢及其调节3.基因信息的传递1生物体的物质组成:高等生物体主要由蛋白质、核酸、糖类、脂类以及水、无机盐等组成,此外还含有一些低分子物质。 2物质代谢:物质代谢的基本过程主要包括三大步骤:消化、吸收中间代谢排泄。其中,中间代谢过程是在细胞内进行的,最为复杂的化学变化过程,它包括合成代谢,分解代谢,物质互变,代谢调控,能量代谢几方面的内容。 3细胞信号转导:细胞内存在多条信号转导途径,而这些途径之间通过一定的方式相互交织在一起,从而构成了非常复杂的信号

7、转导网络,调控细胞的代谢、生理活动及生长分化。 4生物分子的结构与功能:通过对生物大分子结构的理解,揭示结构与功能之间的关系。 5基因信息的传递遗传与繁殖:对生物体遗传与繁殖的分子机制的研究,也是现代生物化学与分子生物学研究的一个重要内容。 五、«生物化学与分子生物学»与药学学科的关系及其在制药工业中的重要性生物化学与分子生物学是药学学科重要的理论基础,药学生物化学与分子生物学是研究与药学科学相关的生物化学与分子生物学理论、原理与技术及其在药物研究、药品生产、药物质量控制与临床应用的基础学科。它从分子水平研究生命现象本质,是研究疾病, 研究药物治病原理不可缺少的基础。 生物

8、化学与分子生物学理论及其技术的发展与现代药学科学的发展具有越来越来密切的联系,是中药学的有效成分分离纯化研究、药物化学的新药设计研究、药理学的生化机理研究、生物药剂学的代谢研究的重要理论基础。生物化学与分子生物学的进展,为新药的发现提供了理论、概念、技术和方法,使药学科学步入一个新的发展阶段,其特点是以化学模式为主体的药学科学迅速转向以生物学和化学相结合的新模式。因此生物化学与分子生物学在当代药学科学发展中起到了先导作用。生物化学与分子生物学在当代制药工业发展中起到了重要作用,以分子生物学DNA重组技术为基础发展起来的生物制药工业开创了制药工业一个新门类。作为制药工程专业学生,学习生物化学与分

9、子生物学主要是学习与药学相关较紧密领域的知识,包括生物化学与分子生物学的基础理论及技术,为今后学习其它各有关药学专业的课程奠定基础。第一部分生物大分子第一章 蛋白质学习目标1、掌握:氨基酸和肽的基本结构、蛋白质的结构与功能。2、熟悉:蛋白质分离纯化的方法及原理。3、 了解:蛋白质一级结构的测定方法,蛋白质的结构与功能的关系;生理活性肽。学习内容纲要1、氨基酸的结构与性质2、肽键3、生理活性肽4、蛋白质分离和纯化的方法及原理5、蛋白质的结构与功能学习要点第一节、 氨基酸的结构与性质 1氨基酸的概念:氨基酸(amino acid)是蛋白质分子的基本结构单位。构成蛋白质分子的氨基酸共有20种,这些氨

10、基酸都是L-构型的-氨基酸。2氨基酸分子的结构通式:3、氨基酸分类:按带电荷情况可分为三类:侧链不带电荷氨基酸:非极性中性氨基酸(8种) (Ala、Val、Leu、Ile、Met、Pro、Phe、Trp);极性中性氨基酸(7种)(Gly、Ser、Thr、Cys、Tyr、Asn、Gln);带负电荷氨基酸2种(酸性氨基酸Asp、Glu);带正电荷氨基酸3种(碱性氨基酸His、Arg、Lys)。4、氨基酸构型(结构特点):构成蛋白质分子的20种氨基酸,除脯氨酸为-亚氨基酸、甘氨酸不含手性碳原子外,其余氨基酸均为L-氨基酸。 5、氨基酸的等电点氨基酸不带电荷时,溶液的pH值称为该氨基酸的等电点,以pI

11、表示。氨基酸不同,其等电点也不同。也就是说,等电点是氨基酸的一个特征值。6、 氨基酸的茚三酮反应如果把氨基酸和茚三酮一起煮沸,除脯氨酸和羟脯氨酸显黄色外,其它氨基酸都显深浅不同的紫色。氨基酸与茚三酮的反应,在生化中是特别重要的,因为它能用来定量测定氨基酸。7、非蛋白质氨基酸除了蛋白质中常见的20种氨基酸及相应的衍生氨基酸外,还有200多种氨基酸以游离或结合的形式存在于生物界,但并不是蛋白质的组成成分,这些氨基酸统称为非蛋白质氨基酸,如-丙氨酸,鸟氨酸等。第二节、 肽键: 1、肽键: 一个氨基酸的-羧基与另一个氨基酸的-氨基以共价键偶联形成肽,其间的化学键称为肽键(peptide bond),也

12、叫酰胺键(-CO-NH-)。2、氨基酸残基:氨基酸分子在参与形成肽键之后,由于脱水而结构不完整,称为氨基酸残基。每条多肽链都有两端:即自由氨基端(N端)与自由羧基端(C端),肽链的方向是N端C端。 3、肽键平面(肽单位): 肽键具有部分双键的性质,不能自由旋转;组成肽键的四个原子及其相邻的两个碳原子处在同一个平面上,为刚性平面结构,称为肽键平面。4、肽(peptide)是氨基酸通过肽键相连的化合物。肽按其组成的氨基酸数目为2个、3个和4个等不同而分别称为二肽、三肽和四肽等,多肽和蛋白质的区别是多肽中氨基酸残基数较蛋白质少,一般少于50个,而蛋白质大多由100个以上氨基酸残基组成,但它们之间在数

13、量上也没有严格的分界线。第四节、蛋白质的分离和纯化1、蛋白质的分离、提纯一般程序:一般的蛋白质需要在细胞破碎后用适当溶剂(如水、稀盐溶液、缓冲液等)将蛋白质溶解出来,再用离心法除去不溶物得到含有目的物的粗抽提液。从总体上来讲,分离纯化蛋白质在对材料进行前处理后需要用沉淀法进行初步分离,之后再以层析或电泳法得到所需的蛋白质产物。(图1-6)(1)前处理:细胞破碎、离心;(2)初分离:沉淀法;(3)精制:层析、电泳。图1-6 分离纯化蛋白质程序示意图在提纯蛋白质过程中需要在每一步检测蛋白质(酶)的存在及提纯的情况,即建立蛋白质定量检测方法。2、盐析:在蛋白质溶液中加入大量中性盐,以破坏蛋白质的胶体

14、性质,使蛋白质从溶液中沉淀析出,称为盐析。常用的中性盐有:硫酸铵、氯化钠、硫酸钠等。蛋白质的等电点概念:蛋白质分子所带正、负电荷相等时溶液的pH值称为蛋白质的等电点。 pH值在等电点以上,蛋白质带负电,在等电点以下,则带正电。溶液的pH在蛋白质的等电点处蛋白质的溶解度最小。蛋白质的有机溶剂沉淀:凡能与水以任意比例混合的有机溶剂,如乙醇、甲醇、丙酮等,均可引起蛋白质沉淀。 3、层析:利用混合物中各组分理化性质的差异,在相互接触的两相(固定相与流动相)之间的分布不同而进行分离。主要有:(1)离子交换层析原理:根据被分离物蛋白质分子所带电荷不同,使用不同离子交换剂,将蛋白质分子分离开;(2) 凝胶过

15、滤层析原理:凝胶过滤也叫分子筛层析。它主要是利用具有网状结构的凝胶的分子筛作用,根据被分离物蛋白质分子的大小不同来进行分离的。其中凝胶层析可用于测定蛋白质的分子量。(3) 亲和层析原理:利用蛋白质分子与其它生物分子间所具有的专一性亲和力而设计的层析技术。4、电泳原理:蛋白质分子在高于或低于其pI的溶液中带净的负或正电荷,因此在电场中可以移动。电泳迁移率的大小主要取决于蛋白质分子所带电荷量以及分子大小。 SDS-PAGE电泳原理:SDS-PAGE是一种电泳方式,该法是采用去污剂即十二烷基磺酸钠使蛋白质变性后进行的一种电泳(SDS: 十二烷基磺酸钠Sodium dodecyl Sulfate;PA

16、GE:聚丙烯酰铵凝胶电泳polyacrylamide gel electrophoresis)。(1)绝大多数蛋白质都能与SDS分子结合,由于SDS带有负电荷,大量的SDS负电荷屏蔽了蛋白质本身所具有的电荷,因此经SDS处理后的蛋白质都具有负电荷,向正极移动。(2)SDS-PAGE完全是基于凝胶过滤效应分离蛋白质,不同分子量的蛋白质形成不同的区带。(3)此外,由于SDS干扰了蛋白质亚基间疏水相互作用,所以在SDS-PAGE中多亚基蛋白质分离成单亚基形式存在。在凝胶上蛋白质的迁移率与分子量的对数呈线性关系,因此,可用该法测定蛋白质的分子量,其准确率为510%。5超速离心:利用物质密度的不同,经超

17、速离心后,分布于不同的液层而分离。超速离心也可用来测定蛋白质的分子量,蛋白质的分子量与其沉降系数S成正比。 6透析:利用透析袋膜的超滤性质,可将大分子物质与小分子物质分离开。 第五节、蛋白质的结构与功能: 一、蛋白质的生物功能:生物催化、机械支撑作用、运输与贮存、协调、免疫保护、生长与分化调控、细胞信号转导、物质跨膜运输、电子传递等。二、蛋白质的分子结构:可为分为一级、二级、三级和四级结构等层次。一级结构为线状结构,二、三、四级结构为空间结构。蛋白质分子的一级结构是形成空间结构的物质基础.1一级结构:指多肽链中氨基酸的排列顺序,其维系键是肽键。蛋白质的一级结构决定其空间结构。 2二级结构:指多

18、肽链主链骨架盘绕折叠而形成的构象,借氢键维系。二级结构是肽链的局部空间结构,它是蛋白质复杂空间结构形成的基础,因此也称为构象单元。主要有以下几种类型: -螺旋:其结构特征为:主链骨架围绕中心轴盘绕形成右手螺旋;螺旋每上升一圈是3.6个氨基酸残基,螺距为0.54nm; 相邻螺旋圈之间形成许多氢键; 侧链基团位于螺旋的外侧。-折叠:其结构特征为: 若干条肽链或肽段平行或反平行排列成片; 所有肽键的C=O和NH形成链间氢键。无规卷曲:主链骨架无规律盘绕的部分。 蛋白质的超二级结构和结构域在蛋白质(特别是球状蛋白)的结构中,经常会出现两个或几个二级结构单元被连接起来,进一步组合成有特殊的几何排列的局域

19、空间结构,这些局域空间结构称为超二级结构(Supersecondary structure),或简称模体(Motif)。超二级结构可以视为是处于二级结构与三级结构之间的一个结构层次。现在已知的超二级结构有3种基本的组合形式:,。多肽链还会在二级结构或超二级结构的基础上形成三级结构的局部折叠区,称为结构域(Structural domain)。对于一些简单的球状蛋白分子来说,它还可能是一个独立的功能单位或功能域(functional domain)。3三级结构:结构域、二级结构、超二级结构的多肽链在空间进一步协同盘曲、折叠,形成包括主链、侧链在内的专一排布,这就是蛋白质的三级结构(Tertiar

20、y structure)。对于一些较小的蛋白质分子,三级结构就是它的完整三维立体结构;而对于大的蛋白质分子,则需要通过三级结构单位的进一步组织才能形成完整分子。其维系键主要是非共价键(次级键):氢键、疏水键、范德华力、离子键等,也可涉及二硫键。 4四级结构:亚基的概念:亚基是指参与构成蛋白质四级结构的而又具有独立三级结构的多肽链。四级结构的概念:含两条以上肽链的蛋白质分子,每条肽链彼此以非共价键相结合,这些肽链称为亚基(Subunit)。通过非共价键形成大分子体系时,亚基间的组合方式称为蛋白质分子的四级结构(Quaternary structury)。其维系键为非共价键。一般来说,单独存在的亚

21、基并没有完整的生物活性,只有具有完整的四级结构的寡聚体才具有生物活性。维持蛋白质空间结构的作用力维持蛋白质空间结构的作用力主要是弱的相互作用称非共价键或次级键,包括氢键、范德华力、静电作用、疏水作用等。其中以氢键和疏水作用是维持蛋白质空间结构的最重要因素。三、蛋白质一级结构的测定: 蛋白质一级结构的测定1、多肽链蛋白质一级结构的测定以胰岛素为例 s A链 s sB链测定步骤:(1) 测定蛋白质分子中多肽链的数目(2) 多肽链的分离及降解(3) 肽段的分离和顺序分析(4) 二硫键SS定位。2、单肽链蛋白质的氨基酸顺序分析,即蛋白质一级结构的测定,主要有以下几个步骤: (1)分离纯化蛋白质,得到一

22、定量的蛋白质纯品; (2)完全水解,测定蛋白质的氨基酸组成; (3)分析蛋白质的N-端和C-端氨基酸; (4)将蛋白质处理为若干条肽段,采用特异性的酶(如胰凝乳蛋白酶)或化学试剂(如溴化氰); (5) 分离纯化单一肽段; (6) 测定各条肽段的氨基酸顺序。一般采用Edman降解法,用异硫氰酸苯酯进行反应,将氨基酸降解后,逐一进行测定; (7) 至少用两种不同的方法处理蛋白质,分别得到其肽段的氨基酸顺序; (8) 将两套不同肽段的氨基酸顺序进行比较,以获得完整的蛋白质分子的氨基酸顺序。 四、 蛋白质的理化性质: 1蛋白质的变性:蛋白质在某些理化因素的作用下,其特定的空间结构被破坏而导致其理化性质

23、改变及生物活性丧失,这种现象称为蛋白质的变性。引起蛋白质变性的因素有:高温、高压、电离辐射、超声波、紫外线及有机溶剂、重金属盐、强酸强碱等。绝大多数蛋白质分子的变性是不可逆的。复性(renaturation):当无活性的伸展的蛋白质进入有利于折叠的最适环境里,则伸展的肽链就会自动折叠成天然的折叠肽,并恢复全部的活性,称为复性。2两性解离与等电点:蛋白质分子中仍然存在游离的氨基和游离的羧基,因此蛋白质与氨基酸一样具有两性解离的性质。蛋白质分子所带正、负电荷相等时溶液的pH值称为蛋白质的等电点。 3蛋白质的紫外吸收:蛋白质分子中的色氨酸、酪氨酸和苯丙氨酸残基对紫外光有吸收,以色氨酸吸收最强,最大吸

24、收峰为280nm。 4蛋白质的胶体性质:蛋白质具有亲水溶胶的性质。蛋白质分子表面的水化膜和表面电荷是稳定蛋白质亲水溶胶的两个重要因素。第一章 蛋白质习题一、名词解释1、肽键(peptide bond)2、蛋白质的等电点(isoelectric point of protein):3、蛋白质的变性(denaturation of protein)4、亚基(subunit)5、盐析 6、离子交换层析7、凝胶过滤层析8、亲和层析9、电泳10、氨基酸11、蛋白质的紫外吸收12、氨基酸的茚三酮反应二、填空题1、组成蛋白质的元素有_、_、_、_。含量恒定的元素是_,其平均含量为_。2、蛋白质结构的基本单位

25、是_,结构通式为_ 。3、肽是氨基酸与氨基酸之间通过_ 相连的化合物。4、蛋白质的二级结构形式有_、_、_、_。5、维持蛋白质空间构象的非共价键有_、_、_、_。7、 氨基酸在等电点(PI)时,以_离子形式存在,在PH>PI时以_离子存在,在PH<PI时,以_离子形式存在。8、氨基酸与茚三酮的反应,除脯氨酸和羟脯氨酸显黄色外,其它氨基酸都显_。在生化中是特别重要的,因为它能用来定量测定_。9、 酸性氨基酸基酸有_、_;碱性氨基酸有_、_、_。含巯基的氨基酸是_。三、单项选择题1有一混合蛋白质溶液,各种蛋白质的pI分别为4.6、5.0、5.3、6.7、7.3。电泳时欲使其中4种泳向正

26、极,缓冲液的pH应该是 ( )A5.0 B4.0 C6.0 D7.0 E8.02蛋白质分子引起280nm光吸收的最主要成分是 ( ) A肽键 B半胱氨酸的-SH基 C苯丙氨酸的苯环 D色氨酸的吲哚环 E组氨酸的咪唑环3含芳香环的氨基酸是 ( ) ALys BTyr CVal DIle EAsp4变性蛋白质的特点是 ( ) A黏度下降 B丧失原有的生物活性 C颜色反应减弱 D溶解度增加 E不易被胃蛋白酶水解5蛋白质变性是由于 ( ) A蛋白质一级结构改变 B蛋白质空间构象的改变 C辅基的脱落 D蛋白质水解 E以上都不是6以下哪一种氨基酸不具备不对称碳原子 ( )A甘氨酸 B丝氨酸 C半胱氨酸 D

27、苏氨酸 E丙氨酸7下列有关蛋白质折叠结构的叙述正确的是( )A折叠结构为二级结构B肽单元折叠成锯齿状C折叠结构的肽链较伸展D若干肽链骨架平行或反平行排列,链间靠氢键维系 E以上都正确8可用于蛋白质定量的测定方法有( )盐析法紫外吸收法C层析法D透析法E以上都可以9维系蛋白质一级结构的化学键是( ) A氢键 B肽键 C盐键 D疏水键 E范德华力10天然蛋白质中不存在的氨基酸是( ) A半胱氨酸 B瓜氨酸 C羟脯氨酸 D蛋氨酸 E丝氨酸11蛋白质多肽链书写方向是( ) A从3¢ 端到5¢端 B从5¢¢端到3¢ 端 C从C端到N端 D从N端到C端 E

28、以上都不是12血浆蛋白质的pI大多为pH56,它们在血液中的主要存在形式是( )A兼性离子B带负电荷 C带正电荷 D非极性分子 E疏水分子13蛋白质分子中的螺旋和片层都属于( )A一级结构B二级结构C三级结构D域结构E四级结构14螺旋每上升一圈相当于氨基酸残基的个数是( )A4.5B3.6C3.0D2.7E2.515下列含有两个羧基的氨基酸是( )A缬氨酸B色氨酸C赖氨酸D甘氨酸E谷氨酸16组成蛋白质的基本单位是( ) AL-氨基酸 BD-氨基酸 CL,-氨基酸 DL,D-氨基酸 ED-氨基酸17维持蛋白质二级结构的主要化学键是( ) A疏水键 B盐键 C肽键 D氢键 E二硫键18蛋白质分子的

29、转角属于蛋白质的( ) A一级结构 B二级结构 C结构域 D三级结构 E四级结构19关于蛋白质分子三级结构的描述错误的是( ) A具有三级结构的多肽链都具有生物学活性 B天然蛋白质分子均有这种结构 C三级结构的稳定性主要由次级键维系 D亲水基团多聚集在三级结构的表面 E决定盘曲折叠的因素是氨基酸序列20有关血红蛋白(Hb)的叙述正确的是( ) A可以与氧结合 B含铁 C含辅基的结合蛋白 D具有四级结构形式 E以上都正确21具有四级结构的蛋白质特征是( ) A分子中必定含有辅基 B四级结构在三级结构的基础上,多肽链进一步折叠、盘曲形成 C依赖肽键维系四级结构的稳定性 D每条多肽链都具有独立的生物

30、学活性 E由两条或两条以上的多肽链组成22关于蛋白质的四级结构正确的是( )A一定有多个不同的亚基B一定有多个相同的亚基C一定有种类相同,而数目不同的亚基数D一定有种类不同,而数目相同的亚基E亚基的种类,数目都不一定相同23蛋白质的一级结构及高级结构决定于( )A 亚基B分子中盐键C氨基酸组成和顺序D分子内部疏水键E分子中氢24蛋白质的等电点是( )A蛋白质溶液的pH等于7时溶液的pHB蛋白质溶液的PH等于7.4时溶液的pHC蛋白质分子呈负离子状态时溶液的pHD蛋白质分子呈正离子状态时溶液的pHE蛋白质的正电荷与负电荷相等时溶液的p25蛋白质溶液的主要稳定因素是( )A蛋白质溶液的黏度大B蛋白

31、质在溶液中有“布朗运动”C蛋白质分子表面带有水化膜和同种电荷D蛋白质溶液有分子扩散现象E蛋白质分子带有电荷 26血清在饱和硫酸铵状态下析出的蛋白质是( ) A纤维蛋白原 B球蛋白 C拟球蛋白 D清蛋白 E球蛋白27. 胰岛素分子A链与B链交联是靠( ) A疏水键 B盐键C氢键 D二硫键 E范德华力四、多项选择题1关于蛋白质的组成正确的有( ) A由C,H,O,N等多种元素组成 B含氮量约为16 C可水解成肽或氨基酸 D由-氨基酸组成 E含磷量约为102蛋白质在280nm波长处的最大光吸收是由下列哪些结构引起的( ) A半胱氨酸的巯基 B酪氨酸的酚基 C色氨酸的吲哚基 D组氨酸的异吡唑基 E精氨

32、酸的胍基3关于蛋白质中的肽键哪些叙述是正确的( ) A比一般CN单键短 B具有部分双键性质 C与肽键相连的氢原子和氧原子呈反式结构 D肽键可自由旋转 E比一般CN单键长4蛋白质的螺旋结构( )A多肽链主链骨架C=O基氧原子与NH基氢原子形成氢键 B脯氨酸和甘氨酸对螺旋的形成无影响C为右手螺旋D每隔3.6个氨基酸残基上升一圈E侧链R基团出现在螺旋圈内5关于蛋白质结构的叙述正确的有( ) A蛋白质的一级结构是空间结构的基础 B亲水氨基酸侧链伸向蛋白质分子的表面C蛋白质的空间结构由次级键维持D有的蛋白质有多个不同结构和功能的结构域E所有蛋白质都有一、二、三、四级结构6关于蛋白质变性的叙述哪些是正确的

33、( )A 尿素引起蛋白质变性是由于特定的肽键断裂B变性是由于二硫键和非共价键破坏引起的C变性都是可逆的 D变性蛋白质的理化性质发生改变E变性蛋白质的空间结构并无改变7下列哪些方法基于蛋白质的带电性质( )A电泳 B透析和超滤 C离子交换层析 D凝胶过滤 E超速离心8 已知卵清蛋白pI=4.6,乳球蛋白pI=5.2,糜蛋白酶原pI=9.1,上述蛋白质在电场中的移动情况为( )A缓冲液pH为7.0时,糜蛋白酶原向阳极移动,其他两种向阴极移动B缓冲液pH为5.0时,卵清蛋白向阳极移动,其他两种向阴极移动C缓冲液pH为9.1时,糜蛋白酶原在原地不动,其他两种向阳极移动D缓冲液pH为5.2时,乳球蛋白在

34、原地不动,卵清蛋白向阴极移动,糜蛋白酶原移向阳极E缓冲液pH为5.0时,卵清蛋白向阴极移动,其他两种向阳极移动9蛋白质处于pH等于其pI的溶液时,蛋白质分子解离状态可为( )蛋白质分子解离为正、负离子的趋势相等,为兼性离子蛋白质的净电荷为零具有相等量的正离子和负离子蛋白质分子处于不解离状态蛋白质分子解离带同一种电荷10组成人体蛋白质的氨基酸( )A都是-氨基酸 B都是-氨基酸 C除甘氨酸外都是D系氨基酸D除甘氨酸外都是L系氨基酸 EL系和D系氨基酸各半11属于蛋白质二级结构的有( )螺旋折叠转角亚基无规卷曲12含羟基的氨基酸有( )苏氨酸丝氨酸赖氨酸酪氨酸半胱氨酸五、问答题1、蛋白质含氮量平均

35、为多少?为何能用蛋白质的含氮量表示蛋白质的相对含量?如何计算?2、 自然界中组成蛋白质的氨基酸有多少种?如何进行分类?4、何谓蛋白质的一级结构(primary structure of protein) ?4、蛋白质的二级结构(secondary structure of protein) ?蛋白质的二级结构主要有哪些形式?5、何谓蛋白质的三级机构(Tertiary structure of protein)?维系蛋白质三级结构的化学键有哪些?6、何谓蛋白质的四级结构(Quaternary structure of protein)?7、蛋白质的分离、提纯一般程序第一章 蛋白质习题参考答案一、

36、名词解释1、肽键(peptide bond):一个氨基酸的-羧基与另一个氨基酸的-氨基以共价键偶联形成肽,其间的化学键称为肽键(peptide bond),也叫酰胺键(-CO-NH-)。2、蛋白质的等电点(isoelectric point of protein):蛋白质所带正负电荷相等时的溶液pH值。3、蛋白质的变性(denaturation of protein):蛋白质在某些理化因素的作用下,其特定的空间结构被破坏而导致其理化性质改变及生物活性丧失,这种现象称为蛋白质的变性。4、亚基(subunit):含两条以上肽链的蛋白质分子,每条肽链彼此以非共价键相结合,这些肽链称为亚基(Subun

37、it)。亚基间的组合方式称为蛋白质分子的四级结构(Quaternary structury)。一般来说,单独存在的亚基并没有完整的生物活性,只有具有完整的四级结构的寡聚体才具有生物活性。5、盐析:在蛋白质溶液中加入大量中性盐,以破坏蛋白质的胶体性质,使蛋白质从溶液中沉淀析出,称为盐析。6、离子交换层析:根据被分离物蛋白质分子所带电荷不同,使用不同离子交换剂,将蛋白质分子分离开。7、凝胶过滤层析:凝胶过滤也叫分子筛层析。它主要是利用具有网状结构的凝胶的分子筛作用,根据被分离物蛋白质分子的大小不同来进行分离的。8、亲和层析:利用蛋白质分子与其它生物分子间所具有的专一性亲和力而设计的层析技术。9、电

38、泳:蛋白质分子在高于或低于其pI的溶液中带净的负或正电荷,因此在电场中可以移动。电泳迁移率的大小主要取决于蛋白质分子所带电荷量以及分子大小。因此,电泳方法可分析蛋白质的纯度,纯化带有不同电荷的蛋白质分子。二、填空题1、C、H、O、N;N;16%2、氨基酸3、肽键4、-螺旋、-折叠、-转角、无规卷曲5、 疏水作用、盐键、氢键、范德华力7、 中性、带负电的阴、带正电荷的阳8、紫色、氨基酸9、 谷氨酸、天冬氨酸;精氨酸、赖氨酸、组氨酸;半胱氨酸三、选择题(每小题1分)1 D2 D3 B4B5 B6 A7 E8 B9 B10 B11 D12 B13 B4 B15 E16 A17D18 B19 A20

39、E21 E22 E23 C24 E25 C26 D27D四、多项选择题(每小题1分)1 ABCD2 BC 3 ABC 4 ACD5 ABCD6 BD7 AC8 BC9 AB10 AD11 ABCE12 ABD四、问答题1、16%。各种来源的蛋白质含氮量基本恒定。每克样品含氮克数6.25100=100克样品蛋白质含量(g%)2、20种。根据侧链的结构和性质分为4类:极性、中性氨基酸;酸性氨基酸 碱性氨基酸 非极性、疏水性氨基酸。3、指蛋白质多肽链中氨基酸的排列顺序。4、二级结构,即多肽链骨架的局部空间结构主要形式和特征有:-螺旋:多肽链盘绕形成右手螺旋,每圈含3.6氨基酸残基,螺距0.54nm,

40、相邻两圈螺旋间形成氢键且与螺旋长轴平行。-折叠:多肽链相对伸展,肽单元折叠成锯齿状,两条以上肽链顺向或反向平行排列,通过氢键联系成片层结构。-转角:发生在多肽链进行180度转折处,由4个氨基酸构成,氢键维系。无规卷曲;无确定规律的肽段。5、三级结构,即整个肽链的折叠情况,包括侧链的排列,也就是蛋白质分子的空间结构或三维结构。通过疏水作用、盐键、氢键、Van der Waals力维系。6、寡聚蛋白(由2个或2个以上独立具有三级结构多肽链组成的蛋白质)中亚基的空间排布和相互作用。】7、蛋白质分离、提纯的一般程序:一般的蛋白质需要在细胞破碎后用适当溶剂(如水、稀盐溶液、缓冲液等)将蛋白质溶解出来,再

41、用离心法除去不溶物得到含有目的物的粗抽提液。从总体上来讲,分离纯化蛋白质在对材料进行前处理后需要用沉淀法进行初步分离,之后再以层析或电泳法得到所需的蛋白质产物。(图1-6)(1)前处理:先将细胞破碎,用适当溶剂将蛋白质溶解出来,离心除去不溶物;(2)初分离:沉淀法;盐析、等电点沉淀(3)精制:层析法:离子交换层析凝胶过滤层析亲和层析电泳法。第二章 核酸学习目标 1、掌握:核酸、核苷酸的结构与功能。2、熟悉:核酸的理化性质。3、熟悉:核酸的含量测定方法。学习内容纲要1、核酸的结构与功能2、DNA的结构和功能3、RNA的结构与功能4、核酸的重要理化性质学习要点第一节 核酸的结构与功能生物界的核酸有

42、两大类,即脱氧核糖核酸(deoxyribonucleic acid,DNA)和核糖核酸(ribonucleic acid,RNA)。核酸由碳、氢、氧、氮、磷元素组成。这两类核酸是生物体遗传的物质基础。DNA携带遗传物质,决定细胞和个体的基因型。RNA则参与细胞内DNA遗传信息的表达。在某些病毒中,RNA也可携带遗传信息。1、核苷酸的组成(一)碱基核酸分子中有两类碱基:嘌呤碱和嘧啶碱。嘌呤碱主要有腺嘌呤(adenine,A)和鸟嘧啶(guanine,G);嘧啶碱主要有胞嘧啶(cytosine,C)、尿嘧啶(uracil,U)和胸腺嘧啶(thymine,T)。这五种碱基在核酸中广泛存在,称基本碱基

43、。(二)戊糖:核苷酸中的戊糖主要有两种,即D-核糖(D-ribose)和D-2脱氧核糖(D-2-deoxyribose)。由此构成的核苷酸也分为核糖核苷酸与脱氧核糖核酸两大类。DNA和RNA 的区别在于:DNA分子中含有胞嘧啶、胸腺嘧啶,不含尿嘧啶,戊糖为2-D-脱氧核糖;RNA分子中含有胞嘧啶 、尿嘧啶,不含胸腺嘧啶,戊糖为D-戊糖。(三)核苷核苷(nucleoside)是由碱基与戊糖缩合形成的化合物。其中碱基与戊糖的连接部位不同:嘧啶核糖核苷中为-N1-糖苷键,嘌呤核糖核苷中为-N9-糖苷键,碱基与核糖缩合形成核糖核苷,与脱氧核糖缩合形成脱氧核糖核苷。如腺嘌呤与核糖缩合生成腺嘌呤核苷,简称

44、腺苷,其它核苷可依此命名:腺嘌呤核苷(腺苷),胞嘧啶核苷(胞苷),腺嘌呤脱氧核苷(脱氧腺苷),胞嘧啶脱氧核苷(脱氧胞苷)。(四)核苷酸核苷分子中戊糖环上的羟基磷酸化,形成核苷酸(nucleotide),也可称为磷酸核苷。根据核苷酸分子中戊糖的不同,核苷酸可分为脱氧核糖核苷酸和核糖核苷酸两类。如腺苷酸-表示腺嘌呤核糖核苷酸,脱氧腺苷酸-表示腺嘌呤脱氧核糖核苷酸。核苷酸的结构与命名: 核苷酸是由核苷与磷酸经脱水缩合后生成的磷酸酯类化合物,包括核糖核苷酸和脱氧核糖核酸两大类。最常见的核苷酸为5-核苷酸(5 常被省略)。5-核苷酸又可按其在5位缩合的磷酸基的多少,分为一磷酸核苷(核苷酸)、二磷酸核苷和

45、三磷酸核苷。 核苷酸通常使用缩写符号进行命名。第一位符号用小写字母d代表脱氧,第二位用大写字母代表碱基,第三位用大写字母代表磷酸基的数目,第四位用大写字母P代表磷酸。例如,dAMP(脱氧核糖腺嘌呤一磷酸核苷酸),AMP(核糖腺嘌呤一磷酸核苷酸)。(五)核苷酸的衍生物1、多磷酸核苷含有一个磷酸基的核苷酸称为一磷酸核苷。5-磷酸核苷的磷酸基进步磷酸化,可生成5-二磷酸核苷和5-三磷酸核苷,后两者称为多磷酸核苷。多磷酸核苷的生物学作用:四种三磷酸脱氧核苷酸(dATP、dGTP、dCTP、dTTP )是合成DNA的重要原料,四种三磷酸核苷酸(ATP、GTP、CTP、UTP)是合成RNA的重要原料。 A

46、TP在生物体内化学能的储存和利用中起着重要作用,ATP、GTP、CTP、UTP则可在多种物质的合成中提供能量。2、环核苷酸此外,生物体内还存在一些特殊的环核苷酸,常见的为环一磷酸腺苷(cAMP)和环一磷酸鸟苷(cGMP),它们通常是作为激素作用的第二信使。第二节 DNA的结构和功能一、DNA的分子组成DNA的基本组成单位是脱氧核苷酸,主要有dAMP、dGMP、dCMP、dTMP四种。DNA在碱基组成上有如下特点:1腺嘌呤和胸腺嘧啶的摩尔数相等,即:A=T;2鸟嘌呤和胞嘧啶的摩尔数相等,即:G=C;3嘌呤的总数等于嘧啶的总数,即:A+G=T+C;这个规律的发现为DNA双螺旋结构模型的建立提供了重

47、要依据。另外,DNA的碱基组成具有种属特异性,但不具有组织特异性,这一规律为确立DNA为遗传物质提供了重要依据。二、DNA的分子结构与功能DNA的结构可分为一级、二级和三级。DNA的一级结构(primary structure)是指DNA分子中核苷酸的排列顺序;二级结构(secondary structure)是指两条DNA单链形成的双螺旋结构;三级结构(tertiary structure)则是指双链DNA进一步扭曲盘旋形成的超螺旋结构。(一) DNA的一级结构与功能DNA由dAMP、dGMP、dCMP和dTMP四种脱氧核糖核苷酸所组成。组成DNA的碱基有腺嘌吟(A)、鸟嘌吟(G)、胞嘧啶(

48、C)和胸腺嘧啶(T)。在DNA的一级结构中,4种脱氧核糖核苷酸以磷酸二酯键相连,形成长链,因为链中所有的脱氧核糖和磷酸都是相同的,所以碱基顺序也就代表核苷酸顺序。核酸具有方向性,5-位上具有自由磷酸基的末端称为5-端,3-位上具有自由羟基的末端称为3-端。除RNA病毒外,大多数生物的遗传信息都以特定的核苷酸排列顺序贮存在DNA分子上。(二) DNA的二级结构与功能DNA双螺旋结构是DNA二级结构的一种重要形式,它是Watson和Crick两位科学家于1953年提出来的一种结构模型,其主要实验依据是Chargaff研究小组对DNA的化学组成进行的分析研究,即DNA分子中四种碱基的摩尔百分比为A=

49、T、G=C、A+G=T+C(Chargaff原则),以及由Wilkins研究小组完成的DNA晶体X线衍射图谱分析。 天然DNA的二级结构以B型为主,其结构特征为:为右手双螺旋,两条链以反平行方式排列;主链位于螺旋外侧,碱基位于内侧;两条链间存在碱基互补,通过氢键连系,且A-T、G-C(碱基互补原则); 螺旋的稳定因素为氢键和碱基堆积力;螺旋的螺距为3.4nm,直径为2nm。 (三) 三级结构DNA双螺旋链的再次螺旋或扭曲就形成了DNA的三级结构。超螺旋是DNA三级结构的一种重要存在形式。(四)DNA的功能: DNA的基本功能是作为遗传信息的载体,为生物遗传信息复制以及基因信息的转录提供模板。

50、DNA分子中具有特定生物学功能的片段称为基因(gene)。一个生物体的全部DNA序列称为基因组(genome)。基因组的大小与生物的复杂性有关。 第三节、RNA的结构与功能RNA的化学结构与DNA相似,也是由4种基本的核苷酸以3',5'一磷酸二酯键连接形成的长链。与DNA不同的是RNA中的戊糖是核糖而不是脱氧核糖,由尿嘧啶取代胸腺嘧啶。(一) RNA分子的组成和种类RNA含A、G、C、U四种基本碱基和一些稀有碱基,戊糖为D-核糖。组成RNA的基本单位为核苷酸,主要有AMP、GMP、CMP、UMP四种。RNA依其结构和功能不同可分为mRNA、 rRNA和tRNA三种类型。真核细胞

51、中还含有核内小分子RNA (snRNA)和胞质小分子RNA(scRNA)。(二) RNA的结构 1、 一级结构RNA的一级结构是指多核苷酸链中的核苷酸排列顺序。RNA分子为单链结构,无互补链。2、二级结构RNA的多核苷酸链可以在某些部分弯曲折叠,形成双螺旋区,此即为RNA的二级结构。双螺旋区的碱基也可按一定的规律配对,GC之间形成氢键、AU之间形成氢键,每个双螺旋区至少有46对碱基对才能保持稳定。3、三级结构tRNA的二级结构在空间伸展,形成倒“L” 型的三维空间立体结构即tRNA的三级结构。在倒“L”型的一端为氨基酸臂,另一端为反密码环。4、mRNA 在DNA分子转录的RNA分子中,有一类可

52、作为蛋白质生物合成的模板,称为信使RNA(messenger RNA, mRNA)。分子中带有遗传密码。mRNA分子中每三个相邻的核苷酸组成一组,在蛋白质翻译合成时代表一个特定的氨基酸,这种核苷酸三联体称为遗传密码(coden)。 mRNA约占细胞RNA总量的1% -5%。5、tRNA在蛋白质的合成过程中转运氨基酸的RNA,叫做转运RNA(transfer RNA, tRNA)。细胞内tRNA种类很多,每种氨基酸至少有一种相应的tRNA与之结合。tRNA约占总RNA的15%。tRNA的二级结构由于局部双螺旋的形成而表现为“三叶草”形,故称为“三叶草”结构,其反密码环中部的三个核苷酸组成三联体,

53、在蛋白质生物合成中,可以用来识别mRNA上相应的密码,故称为反密码(anticoden)。6、rRNA核糖体RNA(ribosomal RNA,rRNA)是细胞内含量最丰富的RNA,约占细胞内RNA的80以上。它们与核糖体蛋白共同构成核糖体,成为蛋白质合成的场所。7、反义RNA碱基序列正好与有义mRNA (sense mRNA)互补的RNA称为反意义或反义RNA,又称为调节RNA。这类RNA也是单链的,可与mRNA配对结合形成双链,抑制mRNA作为模板进行翻译。这是反义RNA主要的调控功能。利用此机制,人工合成一些反意义RNA来调节基因的表达(如癌基因的表达),可用于治疗疾病。第四节 核酸的重

54、要理化性质一、核酸的一般物理性质核酸具有酸性;微溶于水,在乙醇、乙醚、氯仿等有机溶剂中则不溶解。粘度大;能吸收紫外光,最大吸收峰为260nm。二、核酸的酶解生物体内存在多种核酸水解酶。这些酶可以催化水解多种核苷酸链中的磷酸二酯键。可以分为:以DNA为底物的DNA水解酶(DNases)和以RNA为底物的RNA水解酶(RNases)。根据作用方式又可分为两类:核酸外切酶和核酸内切酶。凡是能水解核酸的酶都称为核酸酶。凡能从多核苷酸链的末端开始水解核酸的酶称为核酸外切酶,凡能从多核苷酸链中间开始水解核酸的酶称为核酸内切酶。能识别特定的核苷酸顺序,并从特定位点水解核酸的内切酶称为限制性核酸内切酶(限制酶)。三、核酸的紫外吸收在核酸分子中,由于嘌呤碱和嘧啶碱具有共轭双键体系,因而具有独特的紫外线吸收光谱,一般在260nm左右有最大吸收峰,可以作为核酸及其组分定性和定量测定的依据四、

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论