版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、Neural OscillationsA nonlinear dynamic approachLogistic Differential EquationKNrNN1NNKK/2NtKLogistic Differential EquationKNrNN1NNKK/2Kd/dt N = - d/dN r N2 (N/3k -1/2)= - d/dN V(N)V(N)03K/2NK/2What is a bifurcation?A qualitative change in the solution !Max & Moritz, W. BuschSaddle Node Bifurcati
2、on (1-dim)2xbxPrototypical example:xx b*xA saddle-node bifurcation, tangential bifurcation or fold bifurcation is a local bifurcation in which two fixed points (or equilibria) of a dynamical system collide and annihilate each other.Transcritical BifurcatoinPrototypical example:2xbxxxx b*xA transcrit
3、ical bifurcation is a particular kind of local bifurcation, meaning that it is characterized by an equilibrium having an eigenvalue whose real part passes through zero.Pitchfork BifurcationPrototypical example:3xbxxxx b*x A pitchfork bifurcation is a particular type of local bifurcation. Pitchfork b
4、ifurcations have two types - supercritical or subcritical. Supercritical SubcriticalSubcritical3xrxxHopf-Bifurcation)()(2222yxyyxyyxxyxxPrototypical example:*xBifurcations ? Catastrophes ?Use simple model from classical mechanicsParticle (m=1) in 1D-potential V(x,)Potential changes very slowly with
5、time (slow time scale represented by )Equations of motion: Stability of fix points:xVppx0, 0exxxVpLoss-of-Equilibrium (Saddle-Node Bifurcation)Loss-of-equilibriumor catastrophe at = cPotential,LyapunovfunctionTranscritical BifurcationEquilibrium branches exchange stability at =cOther possibility:sup
6、ercitical pitchfork bifurcationPotential, Lyapunov functionSubcritical BifurcationConstruct the dynamical System ! d/dt x = - d/dx V(x)V(x) = x2 (b - x2)Dynamics of Two Dimensional Systems1.Find the fixed points in the phase space!2.Linearize the system about the fixed points!3.Determine the eigenva
7、lues of the Jacobian.Limit Cycles and Hopf Bifurcation A vector-field interpretationydxdy 2Let the functions F and G have continuous first partial derivatives in a domain D of the xy-plane. A closed trajectory of the system must necessarily enclose at least one critical (equilibrium) point. If it en
8、closes only one critical point, the critical point cannot be a saddle point.Theorem),(yxFdtdx),(yxGdtdyGraphical Interpretationydtdxxdtdy Graphical InterpretationxyyxSpecific Case of Theorem Find solutions for the following systemDo both functions have continuous first order partial derivatives?)()(
9、2222yxyyxyxxyxyxSpecific Case of Theorem Critical point of the system is (0,0) Eigenvalues are found by the corresponding linear systemwhich turn out to be .yxyx1111i1What does this tell us? Origin is an unstable spiral point for both the linear system and the nonlinear system. Therefore, any soluti
10、on that starts near the origin in the phase plane will spiral away from the origin.22yxxyxdtdx22yxyyxdtdyTrajectories of the SystemdtdxdtdyForming a system out of and yields the trajectories shown. Using Polar CoordinatesUsing x = r cos() y = r sin() r 2 = x 2 + y 222yxxyxdtdx22yxyyxdtdyGoes to:21rr
11、dtdrCritical points ( r = 0 , r = 1 )Thus, a circle is formed at r = 1and a point at r = 0. Stability of Period SolutionsOrbital StabilitySemi-stableUnstableExample of StabilityGiven the Previous Equation:21rrdtdrIf r 1, Then, dr/dt 0 (meaning the solution moves inward)If 0 r 0 (meaning the solution
12、s movies outward)Hopf Bifurcation22yxxyxdtdx22yxyyxdtdy2rrdtdrIntroducing the new parameter ( )Converting to polar form as in previous slide yields: Critical Points are now: r = 0 and r = If you notice, these solutions are extremely similar to those of the previous example y2 = xr = 0r = Hopf Bifurc
13、ationAs the parameter increases through the value zero, the previously asymptotically stable critical point at the origin loses its stability, and simultaneously a new asymptotically stable solution (the limit cycle) emerges. Thus, = 0 is a bifurcation point. This type of bifurcation is called Hopf
14、bifurcation, in honor of the Austrian mathematician Eberhard Hopf who rigorously treated these types of problems in a 1942 paper.Hopf Bifurcation Theorem),(),(yxgyyxfx)0 , 0(),(),(),(),(yxgyxgyxfyxfDFyxyxs.eigenvalue its be )( ),(Let 21,at seigenvalueimaginary purely ofpair a are that theySupposec0|
15、)(Re(2, 1cdd.at stable asymptotic is original theandc0), 0 , 0(), 0 , 0(gfHopf Bifurcation Theorem. withincreases size whosecycle,limit stablea by surrounded unstable, is original the, focus; stable is original the, thatsuch some are therepoint; nbifurcatioa is 2112ccccFitzhugh-Nagumo Model Fitzhugh
16、- Nagumo equations:)(33bWaVdtdWIWVVdtdV08. 08 . 0, 7 . 0ba-3-2-10123-2-1.5-1-0.500.511.52VWAnalysis of Fitzhugh-Nagumo System (1) Jacobian:-b -VA 1 )1 (2)(33bWaVdtdWIWVVdtdV08. 08 . 0, 7 . 0baibVbV42. 05 . 0: )0) 1()1(A of esEigen valu2, 1222The fixed point is:Stable Spiral Response of the resting s
17、ystem (I=0) to a current pulse:Analysis of Fitzhugh-Nagumo System (2)-3-2-10123-2-1.5-1-0.500.511.52WV Response of the resting system (I=0) to a current pulse:Analysis of Fitzhugh-Nagumo System (3)-3-2-10123-2-1.5-1-0.500.511.52WVThreshold is due to fast sodium gating (V nullcline)Hyperpolarization
18、and its termination is due to sodium/potassium channel Response to a steady current :Analysis of Fitzhugh-Nagumo System (4)-b -VA 1 )1 (2)(33bWaVdtdWIWVVdtdV08. 08 . 0, 7 . 0baibVbV32. 041. 0: )0) 1()1(A of esEigen valu2, 1222The fixed point is:Unstable spiral Response of the resting system (I=1) to a steady current:Analysis of Fitzhugh-Nagumo System (
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 中国民法史的发展脉络与特点研究-基于清末民初民法典编纂的实证分析
- 2026年甘肃省安全员C证考试题及答案
- 包装服务公司大区经理述职报告
- 软装设计色彩基础知识
- 软体家具产品知识培训
- 跨省异地医保结算
- 不良信息识别与防范
- 跳绳知识教学课件
- 趣味语文知识课件
- 企业行政管理制度化手册
- T/CBMCA 039-2023陶瓷大板岩板装修镶贴应用规范
- 时速公里动力集中鼓形电动车组培训设备中车唐山机车车辆
- 商铺代理出租协议8篇
- 2025年上海市高考生物一模分类汇编:生物与环境(含答案)
- 的股权继承公证书范本
- 2025年威海文旅发展集团有限公司招聘笔试参考题库含答案解析
- 《梅毒诊断及治疗》课件
- 购买助动车合同模板
- 三年级上册语文 1-8单元 基础知识默写单(有答案)
- 2024年高考一轮复习精细讲义第14讲圆周运动(原卷版+解析)
- DL∕T 5366-2014 发电厂汽水管道应力计算技术规程
评论
0/150
提交评论