版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、目录 上页 下页 返回 结束 三、其他未定式三、其他未定式 二、二、 型未定式型未定式一、一、 型未定式型未定式00第二节洛必达法则 第三三章 目录 上页 下页 返回 结束 )()(limxgxf微分中值定理函数的性态导数的性态函数之商的极限导数之商的极限 转化00( 或 型)()(limxgxf本节研究本节研究:洛必达法则洛必达法则洛必达 目录 上页 下页 返回 结束 一、一、0)(lim)(lim) 1xFxfaxax)()(lim)3xFxfax存在 (或为 )()(lim)()(limxFxfxFxfaxax,)()()()2内可导在与aUxFxf0)( xF且定理定理 1.型未定式型
2、未定式00(洛必达法则) 目录 上页 下页 返回 结束 ( 在 x , a 之间)证证: 无妨假设, 0)()(aFaf在指出的邻域内任取,ax 则)(, )(xFxf在以 x, a 为端点的区间上满足柯0)(lim)(lim) 1xFxfaxax故)()()()()()(aFxFafxfxFxf)()(Ff)()(limxFxfax)()(limFfax)()(limxFxfax)3定理条件定理条件: 西定理条件,)()(lim)3xFxfax存在 (或为 ),)()()()2内可导在与aUxFxf0)( xF且目录 上页 下页 返回 结束 推论推论1. 定理 1 中ax 换为下列过程之一:
3、, ax, ax,xx推论推论 2. 若)()(limxFxf满足定且型仍属)(, )(,00 xFxf理1条件, 则)()(lim)()(limxFxfxFxf)()(limxFxf 条件 2) 作相应的修改 , 定理 1 仍然成立.,x)()(lim)()(limxFxfxFxfaxax洛必达法则定理1 目录 上页 下页 返回 结束 例例1. 求.123lim2331xxxxxx解解: 原式型0023注意注意: 不是未定式不能用洛必达法则 !266lim1xxx166lim1x332x1232 xx lim1x洛洛266lim1xxx洛洛目录 上页 下页 返回 结束 二、二、型未定式型未定
4、式)(lim)(lim) 1xFxfaxax)()(lim)3xFxfax存在 (或为)()(limxFxfax定理定理 2.证证: 仅就极限)()(limxFxfax存在的情形加以证明 .)()(limxFxfax(洛必达法则),)()()()2内可导在与aUxFxf0)( xF且目录 上页 下页 返回 结束 1)0)()(limxFxfax的情形)()(limxFxfax limax)(1xF)(1xf limax)()(12xFxF)()(12xfxf)()()()(lim2xfxFxFxfax)()(lim)()(lim2xfxFxFxfaxax)()(lim)()(lim1xfxFx
5、Fxfaxax)()(lim)()(limxFxfxFxfaxax从而型00目录 上页 下页 返回 结束 2)0)()(limxFxfax的情形. 取常数,0k,0 kkxFxfax)()(lim)()()(limxFxFkxfax)()()(limxFxFkxfax)()()(limxFxFkxfaxkxFxfax)()(lim)()(lim)()(limxFxfxFxfaxax可用 1) 中结论目录 上页 下页 返回 结束 3)()(limxFxfax时, 结论仍然成立. ( 证明略 )说明说明: 定理中ax 换为之一, 条件 2) 作相应的修改 , 定理仍然成立., ax, ax,xx,
6、x定理2 目录 上页 下页 返回 结束 例例2. 求.arctanlim12xxx解解: 原式 xlim型00221limxxx1211x21x11lim21xx思考思考: 如何求 nnn12arctanlim( n 为正整数) ?型洛洛目录 上页 下页 返回 结束 例例3. 求. )0(lnlimnxxnx解解:原式11limnxxxnnxxn1lim0例例4. 求求解解: 原式0 xnxxnelim1xnxxnne) 1(lim22lim(0).enxxxnN ,型型洛洛xnxne!lim洛洛洛洛目录 上页 下页 返回 结束 例例4. 求. )0(elim, 0nxxnx(2) n 不为正
7、整数的情形.nx从而xnxexkxexkxe1由(1)0elimelim1xkxxkxxx0elimxnxx用夹逼准则kx1kx存在正整数 k , 使当 x 1 时,目录 上页 下页 返回 结束 例4. )0(0elim, 0nxxnx. )0(0lnlimnxxnx例3. 说明说明:1) 例3 , 例4 表明x时,lnx后者比前者趋于更快 .例如,xxx21lim21limxxxxxx21lim事实上xxx21lim11lim2xx1)0(ex, )0( nxn用洛必达法则2) 在满足定理条件的某些情况下洛必达法则不能解决 计算问题 . 目录 上页 下页 返回 结束 3) 若,)()()(l
8、im时不存在xFxf.)()(lim)()(limxFxfxFxf例如例如,xxxxsinlim1cos1limxx)sin1 (limxxx1极限不存在不能用洛必达法则 ! 即 目录 上页 下页 返回 结束 三、其他未定式三、其他未定式:,0 ,00,1型0解决方法解决方法:通分转化转化000取倒数转化转化0010取对数转化转化例例5. 求).0(lnlim0nxxnx型0解解: 原式nxxxlnlim0110limnxxxn0)(lim0nxnx洛洛目录 上页 下页 返回 结束 型. )tan(seclim2xxx解解: 原式)cossincos1(lim2xxxxxxxcossin1li
9、m2xxxsincoslim20例例6. 求通分转化转化000取倒数转化转化0010取对数转化转化洛洛目录 上页 下页 返回 结束 例例7. 求.lim0 xxx型00解解: xxx0limxxxln0elim0e1利用利用 例例5例5 通分转化转化000取倒数转化转化0010取对数转化转化目录 上页 下页 返回 结束 例例8. 求.sintanlim20 xxxxx解解: 注意到xx sin原式30tanlimxxxx22031seclimxxx2203tanlimxxxxx22tan1sec31型00洛洛目录 上页 下页 返回 结束 例例3nn1nnln1e1例例9. 求. ) 1(lim
10、nnnn2111limxxxx原式法法1. 直接用洛必达法则.型0下一步计算很繁 ! 21 limnn法法2. 利用例3结果.) 1(lim121nnnn1eln1nn21limnnnnln121lnlimnnn0uu1e 原式例3 例例3目录 上页 下页 返回 结束 内容小结内容小结洛必达法则洛必达法则型00,1 ,0型型0型00型gfgf1fgfggf1111fggflne目录 上页 下页 返回 结束 思考与练习思考与练习1. 设)()(limxgxf是未定式极限 , 如果)()(xgxf是否)()(xgxf的极限也不存在 ? 举例说明 .极限不存在 , )1ln()cos1 (cossi
11、n3lim. 2120 xxxxxx说明3) 原式xxxxx120cossin3lim21xxx)1ln(0时,)03(2123分析分析:说明3)2cos1x目录 上页 下页 返回 结束 分析分析:203cos1limxxx30 limxx3.xxxx1sin1cotlim0原式xsinx1coslim0 xxxxsin222103limxxxxcos1221x6161xxxxxx20sin)sin(coslim洛洛目录 上页 下页 返回 结束 ,1xt 则2011221limtttt4. 求xxxxx122lim23解解: 令原式tt2lim0 21)21 ( t21)1 (t2)1 ()2
12、1 (lim2323210ttt41洛洛洛洛目录 上页 下页 返回 结束 求下列极限 :;)11ln(lim) 12xxxx解解:tttt1)1ln(1lim2020)1ln(limtttt.cossec)1ln()1ln(lim)3220 xxxxxxx;e1lim)2211000 xxx)11ln(lim) 12xxxx)1 (2lim0tttt备用题备用题ttt21lim11021)1(xt 令洛洛目录 上页 下页 返回 结束 ,12xt 则tttelim50原式 =50limettt0ttte50lim49211000e1lim)2xxx解解: 令tte!50lim(用洛必达法则)(继续用洛必达法则)目录 上页 下页 返回 结束 xxxxxcossec)1ln(lim22201xxxxxcossec)1 (lnlim420 xxxxxcosseclim4200limx1sec42sinlim220 xxxxxxxxxxxxcossec)1ln()1ln(lim)3220解解:原式 =342xxxxtansec)sin(x第三节 洛洛uuu)1ln(0时洛必达洛必达(1661 17
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年度河南钢铁集团招聘大学生笔试历年常考点试题专练附带答案详解
- 2025年常州市体育局下属事业单位公开招聘工作人员备考题库及答案详解(考点梳理)
- 2026安徽能源集团秋招面笔试题及答案
- 修文县面向教育部直属师范大学2026届公费师范生毕业生招聘教师备考题库参考答案详解
- 上海外国语大学贤达经济人文学院《形势与政策》2023-2024学年第一学期期末试卷
- 2026年内蒙古农村商业银行管理人员及专业人才公开招聘备考题库及一套答案详解
- 西南林业大学《中国近代史纲要》2023-2024学年第一学期期末试卷
- 2026年中国科学院大气物理研究所郑飞课题组科研财务助理招聘备考题库及答案详解(新)
- 2026年武定县公安局特巡警大队公开招聘辅警备考题库及参考答案详解1套
- 2026年中电建商业保理有限公司校园招聘备考题库及一套完整答案详解
- 2025年山东能源集团有限公司社会招聘笔试试卷及答案
- 国家开放大学电大本科《行政领导学》期末试题标准题库及答案
- 慢病管理课件
- ASME BPVC SECTION VIII-2025版压力容器建造规则Div3全套程序文件
- 国开(内蒙古)2025年《信息时代的生产技术》形考作业1-3终考答案
- 排烟风管改造施工方案
- 2025年大学生职业生涯规划与就业指导学习通测试及答案
- (人教A版)选择性必修一高二数学上册 期末考试押题卷01(考试范围:选择性必修第一册、数列)(原卷版)
- 文艺演出与政府合同协议
- 物业法律法规知识培训课件
- 地质灾害危险性区域评估服务 方案投标文件(技术标)
评论
0/150
提交评论